Diagnosis

Diagnosis

2.6 Phenotypic and genotypic DST

Treatment of TB has undergone significant changes over recent years, with new drugs and regimens recommended; hence, the definitions for DR-TB have been revised accordingly. The updated pre-XDR-TB definition is "TB caused by M. tuberculosis strains that fulfil the definition of MDR/RR-TB and are also resistant to any FQ". The updated XDR-TB definition is "TB caused by M. tuberculosis strains that fulfil the definition of MDR/RR-TB and that are also resistant to any FQ and at least one additional Group A drug (i.e.

A2.4 Information sheet: Practical considerations for implementation of the Bruker-Hain Lifesciences FluoroType MTB and FluoroType MTBDR

Bruker-Hain Diagnostics has two real-time nucleic acid amplification tests (NAATs), the FluoroType MTB to detect Mycobacterium tuberculosis complex (MTBC) and the FluoroType MTBDR, to detect MTBC, and resistance to rifampicin (RIF) and isoniazid (INH) in tuberculosis (TB). The MTB test (VER 1.0) targets the IS6110 DNA insertion element for MTBC detection, while the MTBDR test (VER 2.0) targets the rpoB gene for detection of MTBC and RIF resistance, and the inhA promoter and katG gene for detection of INH resistance.

A2.5 Information sheet: Practical considerations for implementation of the Cepheid Xpert MTB/XDR test

The Xpert MTB/XDR detects Mycobacterium tuberculosis complex (MTBC) DNA and genomic mutations associated with resistance to isoniazid (INH), fluoroquinolones (FQs), ethionamide (ETH) and second-line injectable drugs (amikacin [AMK], kanamycin and capreomycin) in a single cartridge. Xpert MTB/XDR tests are run on Cepheid's GeneXpert instruments, using 10-colour modules that differ from the 6-colour modules traditionally used for Xpert MTB/RIF and Xpert MTB/RIF Ultra (Xpert Ultra) testing.

A2.6 Information sheet: Practical considerations for implementation of the Nipro Genoscholar PZA-TB II assay

Nipro (Osaka, Japan) developed Genoscholar PZA-TB, a reverse hybridization-based technology for detection of pyrazinamide (PZA) resistance in tuberculosis (TB) (1, 2). Compared with MTBDRplus and MTBDRs/ LPA, the Genoscholar PZA-TB line-probe assay (LPA) does not include specific mutant probes, because resistance mutations are widespread across the entire pncA gene with no predominant mutations.

A2.3 Information sheet: Practical considerations for implementation of the Roche cobas MTB and cobas MTB-RIF/INH assays

Roche Molecular Systems, Inc. (RMS, Roche) has two nucleic acid amplification tests (NAATs), the cobas MTB and cobas MTB-RIF/INH tests, to detect Mycobacterium tuberculosis complex (MTBC) and drug resistance (rifampicin [RIF] and isoniazid [INH]), respectively (1,2) in tuberculosis (TB). The MTB assay detects both 16S rRNA and esx genes as target genes for MTBC detection.

A2.2 Information sheet: Practical considerations for implementation of the BD MAX MDR-TB test

Becton Dickinson (BD) has a multiplexed real-time polymerase chain reaction (PCR) nucleic acid amplification tests (NAAT) (BD MAX MDR-TB) for the detection of Mycobacterium tuberculosis complex (MTBC) and resistance to both rifampicin (RIF) and isoniazid (INH) in tuberculosis (TB). For MTBC detection, this test targets the multicopy genomic elements IS6110 and IS1081, as well as a single copy genomic target.

A2.1 Information sheet: Practical considerations for implementation of the Abbott RealTime MTB and Abbott RealTime MTB RIF/INH tests

Abbott Molecular diagnostic solution for tuberculosis (TB) has two nucleic acid amplification tests (NAATs), one for detection of Mycobacterium tuberculosis complex (MTBC) (RealTime MTB test) and one for detection of resistance to both rifampicin (RIF) and isoniazid (INH) (RealTime MTB RIF/INH) (1). TB detection is based on the IS6110 genetic element and the pab gene targets.