References

  1. Houben RMGJ, Dodd PJ. The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLOS Med. 2016;13(10):e1002152. doi:10.1371/journal.pmed.1002152.
  2. Cohen A, Mathiasen VD, Schön T, Wejse C. The global prevalence of latent tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2019;54(3):1900655. doi:10.1183/13993003.00655–2019.
  3. Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis infection. N Engl J Med. 2015;372(22):2127–35. doi:10.1056/NEJMra1405427.
  4. Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol. 1974 Feb;99(2):131–8. doi:10.1093/oxfordjournals.aje.a121593.
  5. Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ. 2018;362:k2738. doi:10.1136/bmj.k2738.
  6. Borgdorff MW, Sebek M, Geskus RB, Kremer K, Kalisvaart N, van Soolingen D. The incubation period distribution of tuberculosis estimated with a molecular epidemiological approach. Int J Epidemiol. 2011;40(4):964–70. doi:10.1093/ije/dyr058.
  7. The End TB Strategy. Geneva: World Health Organization; 2024 (https://www.who.int/teams/global-tuberculosis-programme/the-end-tb-strategy).
  8. Framework towards tuberculosis elimination in low-incidence countries (WHO/HTM/TB/2014.13). Geneva: World Health Organization; 2014 (http://apps.who.int/iris/bitstream/10665/132231/1/9789241507707_ eng.pdf).
  9. Global tuberculosis report 2023. Geneva: World Health Organization; 2023 (https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023).
  10. The second United Nations high-level meeting on TB: new global pledge to end the TB epidemic. declaration on TB. Geneva: World Health Organization; 2023 (https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023/featured-topics/un-declaration-on-tb).
  11. Funding a tuberculosis-free future: an investment case for screening and preventive treatment. Geneva: World Health Organization; 2024 (https://www.who.int/publications-detail-redirect/9789240091252).
  12. Vesga JF, Mohamed MS, Shandal M, Jabbour E, Lomtadze N, Kubjane M et al. The return on investment of scaling tuberculosis screening and preventive treatment: a modelling study in Brazil, Georgia, Kenya, and South Africa. medRxiv. 2024.03.12.24303930 (https://www.medrxiv.org/content/10.1101/2024.03.12.24303930v1).
  13. WHO consolidated guidelines on tuberculosis. Module 1: prevention – tuberculosis preventive treatment, second edition. Geneva: World Health Organization; 2024 (https://iris.who.int/handle/10665/378536).
  14. Monitoring the building blocks of health systems: a handbook of indicators and their measurement strategies. Geneva: World Health Organization; 2010 (https://iris.who.int/handle/10665/258734).
  15. Oxlade O, den Boon S, Menzies D, Falzon D, Lane MY, Kanchar A et al. TB preventive treatment in high- and intermediate-incidence countries: research needs for scale-up. Int J Tuberc Lung Dis. 2021;25(10):823–31. doi:10.5588/ijtld.21.0293.
  16. Alsdurf H, Hill PC, Matteelli A, Getahun H, Menzies D. The cascade of care in diagnosis and treatment of latent tuberculosis infection: a systematic review and meta-analysis. Lancet Infect Dis. 2016;16(11):1269–78. doi:10.1016/S1473–3099(16)30216-X.
  17. WHO consolidated guidelines on tuberculosis. Module 2: screening – systematic screening for tuberculosis disease. Geneva: World Health Organization; 2021 (https://apps.who.int/iris/bitstream/handle/10665/340255/9789240022676-eng.pdf).
  18. Lönnroth K, Migliori GB, Abubakar I, D’Ambrosio L, de Vries G, Diel R et al. Towards tuberculosis elimination: an action framework for low-incidence countries. Eur Respir J. 2015;45(4):928–52. doi:10.1183/09031936.00214014.
  19. Integrated Health Tool for TB. Geneva: World Health Organization (https://tb.integratedhealthtool.org/).
  20. Ford N, Matteelli A, Shubber Z, Hermans S, Meintjes G, Grinsztejn B et al. TB as a cause of hospitalization and in-hospital mortality among people living with HIV worldwide: a systematic review and meta-analysis. J Int AIDS Soc. 2016;19(1):20714. doi:10.7448/IAS.19.1.20714.
  21. Badje A, Moh R, Gabillard D, Guéhi C, Kabran M, Ntakpé JB et al. Effect of isoniazid preventive therapy on risk of death in west African, HIV-infected adults with high CD4 cell counts: long-term follow-up of the Temprano ANRS 12136 trial. Lancet Glob Health. 2017;5(11):e1080–9. doi:10.1016/S2214–109X(17)30372–8.
  22. Bruins WS, van Leth F. Effect of secondary preventive therapy on recurrence of tuberculosis in HIV-infected individuals: a systematic review. Infect Dis. 2017;49(3):161–9. doi:10.1080/23744235.2016.1262059.
  23. Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource-constrained settings. Geneva: World Health Organization; 2011 (https://apps.who.int/iris/bitstream/handle/10665/44472/9789241500708_eng.pdf).
  24. Cotton MF, Schaaf HS, Lottering G, Weber HL, Coetzee J, Nachman S et al. Tuberculosis exposure in HIV-exposed infants in a high-prevalence setting. Int J Tuberc Lung Dis. 2008;12(2):225–7. PMID:18230259.
  25. Cranmer LM, Kanyugo M, Jonnalagadda SR, Lohman-Payne B, Sorensen B, Maleche Obimbo E et al. High prevalence of tuberculosis infection in HIV-1 exposed Kenyan infants. Pediatr Infect Dis J. 2014;33(4):401–6. doi:10.1097/INF.0000000000000124.
  26. Kali PBN, Gray GE, Violari A, Chaisson RE, McIntyre JA, Martinson NA. Combining PMTCT with active case finding for tuberculosis. J Acquir Immune Defic Syndr. 2006;42(3):379–81. doi:10.1097/01. qai.0000218434.20404.9c.
  27. Sterling TR, Alwood K, Gachuhi R, Coggin W, Blazes D, Bishai WR et al. Relapse rates after short-course (6-month) treatment of tuberculosis in HIV-infected and uninfected persons. AIDS. 1999;13(14):1899–904. doi:10.1097/00002030–199910010–00012.
  28. Vernon A, Burman W, Benator D, Khan A, Bozeman L. Acquired rifamycin monoresistance in patients with HIV-related tuberculosis treated with once-weekly rifapentine and isoniazid. Tuberculosis Trials Consortium. Lancet. 1999;353(9167):1843–7. doi:10.1016/s0140–6736(98)11467–8.
  29. Small PM, Shafer RW, Hopewell PC, Singh SP, Murphy MJ, Desmond E et al. Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. N Engl J Med. 1993;328(16):1137–44. doi:10.1056/NEJM199304223281601.
  30. Crampin AC, Mwaungulu JN, Mwaungulu FD, Mwafulirwa DT, Munthali K, Floyd S et al. Recurrent TB: relapse or reinfection? The effect of HIV in a general population cohort in Malawi. AIDS. 2010;24(3):417–26. doi:10.1097/QAD.0b013a32832f51cf.
  31. Narayanan S, Swaminathan S, Supply P, Shanmugam S, Narendran G, Hari L et al. Impact of HIV infection on the recurrence of tuberculosis in South India. J Infect Dis. 2010;201(5):691–703. doi:10.1086/650528.
  32. Chaisson RE, Churchyard GJ. Recurrent tuberculosis: relapse, reinfection, and HIV. J Infect Dis. 2010;201(5):653–5. doi:10.1086/650531.
  33. Naidoo K, Dookie N. Insights into recurrent tuberculosis: relapse versus reinfection and related risk factors. In: Kayembe JMN, editor. Tuberculosis. London: IntechOpen; 2018. doi:10.5772/intechopen.73601.
  34. Fox GJ, Barry SE, Britton WJ, Marks GB. Contact investigation for tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2013;41(1):140–56. doi:10.1183/09031936.00070812.
  35. Morrison J, Pai M, Hopewell PC. Tuberculosis and latent tuberculosis infection in close contacts of people with pulmonary tuberculosis in low-income and middle-income countries: a systematic review and meta-analysis. Lancet Infect Dis. 2008;8(6):359–68. doi:10,1016/S1473–3099(08)70071–9.
  36. Gupta A, Swindells S, Kim S, Hughes MD, Naini L, Wu X et al. Feasibility of identifying household contacts of rifampin- and multidrug-resistant tuberculosis cases at high risk of progression to tuberculosis disease. Clin Infect Dis. 2020;70(3):425–35. doi:10.1093/cid/ciz235.
  37. Martinez L, Cords O, Horsburgh CR, Andrews JR, Pediatric TB Contact Studies Consortium. The risk of tuberculosis in children after close exposure: a systematic review and individual-participant meta-analysis. Lancet. 2020;395(10228):973–84. doi:10.1016/S0140–6736(20)30166–5.
  38. Lung T, Marks GB, Nhung NV, Anh NT, Hoa NLP, Anh LTN et al. Household contact investigation for the detection of tuberculosis in Vietnam: economic evaluation of a cluster-randomised trial. Lancet Glob Health. 2019;7(3):e376–84. doi:10.1016/S2214–109X(18)30520–5.
  39. WHO operational handbook on tuberculosis. Module 1: prevention – infection prevention and control. Geneva: World Health Organization; 2023 (https://apps.who.int/iris/bitstream/handle/10665/372738/9789240078154-eng.pdf).
  40. WHO operational handbook on tuberculosis. Module 6: tuberculosis and comorbidities. Geneva: World Health Organization; 2024 (https://iris.who.int/handle/10665/376549).
  41. TB DIAH eLearning Portal. TB contact investigations for frontline workers. (https://training.tbdiah.org/)
  42. Harries AD, Nair D, Thekkur P, Ananthakrishnan R, Thiagesan R, Chakaya JM et al. TB preventive therapy: uptake and time to initiation during implementation of ‘7–1-7.’ Int J Tuberc Lung Dis Open. 2024;1(4):189–91. doi: 10.5588/ijtldopen.23.0615.
  43. Sulis G, Combary A, Getahun H, Gnanou S, Giorgetti PF, Konseimbo A et al. Implementation of tuberculosis prevention for exposed children, Burkina Faso. Bull World Health Organ. 2018;96(6):386–92. doi:10.2471/ BLT.17.201343.
  44. Bhargava A, Bhargava M, Meher A, Benedetti A, Velayutham B, Sai Teja G et al. Nutritional supplementation to prevent tuberculosis incidence in household contacts of patients with pulmonary tuberculosis in India (RATIONS): a field-based, open-label, cluster-randomised, controlled trial. Lancet. 2023;402(10402):627–40. doi:1016/S0140–6736(23)01231-X.
  45. Public notice: WHO to convene Guideline Development Group (GDG) meeting on tuberculosis and undernutrition. Geneva: World Health Organization; 2024 (https://www.who.int/news-room/articles-detail/who-to-convene-guideline-development-group-meeting-on-tuberculosis-and-undernutrition).
  46. Programmatic implementation of tuberculosis contact investigation (PI-TBCI). Package of tools for priority high TB burden countries. Washington DC: US Agency for International Development; 2020 (https://www.usaid.gov/sites/default/files/2022–05/PI_TBCI_For_Web.pdf).
  47. Rapid training and deployment of nurse-led community-based TB contact investigation teams in five rural districts in Mozambique: a promising new model for community-based services (Abstract OA30–439–16). Int J Tuberc Lung Dis; 2023;27(Suppl._1):S284 (https://conf2023.theunion.org/wp-content/uploads/2023/12/UNION2023_Abstracts.pdf)
  48. Assefa Y, Woldeyohannes S, Gelaw YA, Hamada Y, Getahun H. Screening tools to exclude active pulmonary TB in high TB burden countries: systematic review and meta-analysis. Int J Tuberc Lung Dis. 2019;23(6):728–34. doi:10.5588/ijtld.18.0547.
  49. WHO operational handbook on tuberculosis. Module 2: screening – systematic screening for tuberculosis disease. Geneva: World Health Organization; 2021 (https://apps.who.int/iris/bitstream/handle/10665/340256/9789240022614-eng.pdf).
  50. ScreenTB. Geneva: World Health Organization; 2024 (https://screentb.org/#).
  51. WHO consolidated guidelines on tuberculosis. Module 5: management of tuberculosis in children and adolescents. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240046764).
  52. Roadmap towards ending TB in children and adolescents, third ed. Geneva: World Health Organization; 2023 (https://www.who.int/publications-detail-redirect/9789240084254).
  53. WHO operational handbook on tuberculosis. Module 3: diagnosis. Tests for tuberculosis infection. Geneva: World Health Organization; 2022 (https://iris.who.int/bitstream/handle/10665/363335/9789240058347-eng.pdf).
  54. Prevent TB Digital Platform. Geneva: World Health Organization; 2020 (https://www.who.int/activities/preventing-tb).
  55. QuantiFERON®-TB Gold Plus Blood Collection Tubes Instructions for Use. Version 1. Qiagen; 2023.(https://www.qiagen.com/lk/resources/download.aspx?id=22bdba7c-4b2b-44cc-9a1c-715d264f87a0&lang=en).
  56. Akolo C, Adetifa I, Shepperd S, Volmink J. Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev. 2010;(1):CD000171. doi:10.1002/14651858.CD000171.pub3.
  57. Zenner D, Beer N, Harris RJ, Lipman MC, Stagg HR, van der Werf MJ. Treatment of latent tuberculosis infection: an updated network meta-analysis. Ann Intern Med. 2017;167(4):248. doi:10.7326/M17–0609.
  58. Hamada Y, Ford N, Schenkel K, Getahun H. Three-month weekly rifapentine plus isoniazid for tuberculosis preventive treatment: a systematic review. Int J Tuberc Lung Dis. 2018;22(12):1422–8. doi:10.5588/ ijtld.18.0168.
  59. Sharma SK, Sharma A, Kadhiravan T, Tharyan P. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev. 2013;2013(7):CD007545. doi:10.1002/14651858.CD007545.pub2.
  60. Pease C, Hutton B, Yazdi F, Wolfe D, Hamel C, Quach P et al. Efficacy and completion rates of rifapentine and isoniazid (3HP) compared to other treatment regimens for latent tuberculosis infection: a systematic review with network meta-analyses. BMC Infect Dis. 2017;17(1):265. doi:10.1186/s12879–017–2377-x.
  61. January 2024 Medicines Catalog. Global Drug Facility Geneva: Stop TB Partnership; 2024 (https://www.stoptb.org/sites/default/files/2024.01.18_gdf_medicines_catalog_jan_2024.pdf).
  62. Zunza M, Gray DM, Young T, Cotton M, Zar HJ. Isoniazid for preventing tuberculosis in HIV-infected children. Cochrane Database Syst Rev. 2017: CD006418. doi:10.1002/14651858.CD006418.pub3.
  63. Swindells S, Ramchandani R, Gupta A, Benson CA, Leon-Cruz J, Mwelase N et al. One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. New Engl J Med. 2019;380(11):1001–11. doi:10.1056/ NEJMoa1806808.
  64. Efficacy and safety of 3HP versus 1HP in people without HIV. Tb-trials. Geneva: World Health Organization; 2023 (https://tbtrialtrack.who.int/#/detailPage/286)
  65. ‘One To Three’ Trial. Tb-trials. Geneva: World Health Organization; 2023 (https://tbtrialtrack.who.int/#/detailPage/393).
  66. Phase I/II dose finding, safety and tolerability study of daily rifampicin combined with isoniazid (1HP) for tuberculosis prevention in children two to less than 13 years of age with and without AIDS. IMPAACT 2024. Geneva: Unitaid; 2024 (https://www.impaactnetwork.org/studies/impaact2024).
  67. Protecting households on exposure to newly diagnosed index multidrug-resistant tuberculosis patients (PHOENIx MDR-TB). Report No. NCT03568383. Rockville (MD): National Institute of Allergy and Infectious Diseases (https://clinicaltrials.gov/study/NCT03568383).
  68. Bhargava A. The 3 HP regimen for tuberculosis preventive treatment: safety, dosage and related concerns during its large-scale implementation in countries like India. Lancet Reg Health Southeast Asia. 2024. doi:10.1016/j.lansea.2024.10042.
  69. Partosch F, Mielke H, Stahlmann R, Gundert-Remy U. Exposure of nursed infants to maternal treatment with ethambutol and rifampicin. Basic Clin Pharmacol Toxicol. 2018;123(2):213–20. doi:10.1111/bcpt.12995.
  70. Technical Advisory Group on dosing of TB medicines for adults and children. Geneva: World Health Organization; 2024 (https://www.who.int/groups/technical-advisory-group-on-dosing-of-tb-medicines-for-adults-and-children).
  71. WHO operational handbook on tuberculosis. Module 4: treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240006997).
  72. IMPAACT4TB Consortium. Paediatric 3HP TB preventive treatment. How to give it to a child (https://www.youtube.com/watch?v=Z49PHP5AEQE).
  73. Croeser H. IMPAACT4TB rifapentine-based product brief for 3HP and 1HP. IMPAACT4TB. Geneva: Unitaid; 2023 (http://impaact4tb.org/nitrosamines-and-tb-preventive-treatments-2–2/).
  74. Croeser H. Press release: New child-friendly formulation of rifapentine for short course tuberculosis prevention treatment now available as Unitaid and IMPAACT4TB launch an early market access vehicle (EMAV). Geneva: Unitaid; 2023 (https://impaact4tb.org/press-release-child-friendly-rpt-short-course-tpt-and-early-market-access/).
  75. 1/4/6 x 24. New York (NY): Treatment Action Group (https://www.treatmentactiongroup.org/1–4-6-x-24/).
  76. Snider DE. Pyridoxine supplementation during isoniazid therapy. Tubercle. 1980;61(4):191–6. doi:10.1016/0041–3879(80)90038–0.
  77. Biehl JP, Nimitz HJ. Studies on the use of high dose of isoniazid. I. Toxicity studies. Am Rev Tuberc. 1954;70(3):430–41. doi:10.1164/art.1954.70.3.430.
  78. Oestreicher R, Dressler SH, Middlebrook G. Peripheral neuritis in tuberculous patients treated with isoniazid. Am Rev Tuberc. 1954;70(3):504–8. doi:10.1164/art.1954.70.3.504.
  79. Denholm JT, McBryde ES, Eisen DP, Penington JS, Chen C, Street AC. Adverse effects of isoniazid preventative therapy for latent tuberculosis infection: a prospective cohort study. Drug Healthc Patient Saf. 2014;6:145–9. doi:10.2147/DHPS.S68837.
  80. Toman K, Frieden TR, World Health Organization, editors. Toman’s tuberculosis: case detection, treatment, and monitoring: questions and answers. Geneva: World Health Organization; 2004 (https://iris.who.int/handle/10665/42701).
  81. Money GL. Isoniazid neuropathies in malnourished tuberculous patients. J Trop Med Hyg. 1959;62(8):198–202.
  82. McCune R, Deuschle K, McDermott W. The delayed appearance of isoniazid antagonism by pyridoxine in vivo. Am Rev Tuberc. 1957;76(6):1100–5. doi.10.1164/artpd.1957.76.6.1100.
  83. Schaumburg H, Kaplan J, Windebank A, Vick N, Rasmus S, Pleasure D et al. Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome. N Engl J Med. 1983;309(8):445–8. doi.10.1056/ NEJM198308253090801.
  84. Ghavanini AA, Kimpinski K. Revisiting the evidence for neuropathy caused by pyridoxine deficiency and excess. J Clin Neuromuscul Dis. 2014;16(1):25–31. doi:10.1097/CND.0000000000000049.
  85. Gupta A, Nayak U, Ram M, Bhosale R, Patil S, Basavraj A et al. Postpartum tuberculosis incidence and mortality among HIV-Infected women and their infants in Pune, India, 2002–2005. Clin Infect Dis. 2007;45(2):241–9. doi:10.1086/518974.
  86. Salazar-Austin N, Hoffmann J, Cohn S, Mashabela F, Waja Z, Lala S et al. Poor obstetric and infant outcomes in human immunodeficiency virus-infected pregnant women with tuberculosis in South Africa: the Tshepiso study. Clin Infect Dis. 2018;66(6):921–9. doi:10.1093/cid/cix851.
  87. Isoniazid tablets, USP. Rx only. WARNING. Silver Spring (MD): US Food and Drug Administration; 2016 (https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/008678s028lbl.pdf).
  88. Rifadin® (rifampin capsules USP) and Rifadin® IV (rifampin for injection USP). Silver Spring (MD): US Food and Drug Administration; 2022 (https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/050420s087,050627s030lbl.pdf).
  89. Gupta A, Montepiedra G, Aaron L, Theron G, McCarthy K, Bradford S et al. Isoniazid preventive therapy in HIV-infected pregnant and postpartum women. N Engl J Med. 2019;381(14):1333–46. doi:10.1056/ NEJMoa1813060.
  90. Gupta A, Singh P, Aaron L, Montepiedra G, Chipato T, Stranix-Chibanda L et al. Timing of maternal isoniazid preventive therapy on tuberculosis infection among infants exposed to HIV in low-income and middle-income settings: a secondary analysis of the TB APPRISE trial. Lancet Child Adolesc Health. 2023;7(10):708–17. doi:10.1016/S2352–4642(23)00174–8.
  91. Denti P, Martinson N, Cohn S, Mashabela F, Hoffmann J, Msandiwa R et al. Population pharmacokinetics of rifampin in pregnant women with tuberculosis and HIV coinfection in Soweto, South Africa. Antimicrob Agents Chemother. 2015;60(3):1234–41. doi:10.1128/AAC.02051–15.
  92. Chihota V, Waggie Z, Cardenas V, Martinson N, Yimer G, Garcia-Basteiro AL et al. Safety of short-course weekly rifapentine and isoniazid (3HP) for TB preventive treatment during pregnancy (Abstract OA07–638–19). Int J Tuberc Lung Dis. 2021:25(10):S61 (https://theunion.org/sites/default/files/2021-10/UNION2021_Abstracts_High.pdf).
  93. Mathad JS, Savic R, Britto P, Jayachandran P, Wiesner L, Montepiedra G et al. Pharmacokinetics and safety of 3 months of weekly rifapentine and isoniazid for tuberculosis prevention in pregnant women. Clin Infect Dis. 2022;74(9):1604–13. doi:10.1093/cid/ciab665.
  94. Acar S, Keskin-Arslan E, Erol-Coskun H, Kaya-Temiz T, Kaplan YC. Pregnancy outcomes following quinolone and fluoroquinolone exposure during pregnancy: a systematic review and meta-analysis. Reprod Toxicol. 2019;85:65–74. doi:10.1016/j.reprotox.2019.02.002.
  95. Levofloxacin. In: Drugs and Lactation Database (LactMed®). Bethesda (MD): National Institute of Child Health and Human Development; 2006 (http://www.ncbi.nlm.nih.gov/books/NBK501002/).
  96. FDA reinforces safety information about serious low blood sugar levels and mental health side effects with fluoroquinolone antibiotics; requires label changes. Silver Spring (MD): US Food and Drug Administration; 2018 (https://www.fda.gov/drugs/drug-safety-and-availability/fda-reinforces-safety-information-about-serious-low-blood-sugar-levels-and-mental-health-side).
  97. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. Amsterdam: European Medicines Agency; 2019 (https://www.ema.europa.eu/en/documents/referral/quinolone-fluoroquinolone-article-31-referral-disabling-potentially-permanent-side-effects-lead_en.pdf).
  98. Fluoroquinolone antibiotics: must now only be prescribed when other commonly recommended antibiotics are inappropriate. London: Medicines and Healthcare products Regulatory Agency; 2024 (https://www.gov.uk/drug-safety-update/fluoroquinolone-antibiotics-must-now-only-be-prescribed-when-other-commonly-recommended-antibiotics-are-inappropriate).
  99. McIlleron H, Denti P, Cohn S, Mashabela F, Hoffmann JD, Shembe S et al. Prevention of TB using rifampicin plus isoniazid reduces nevirapine concentrations in HIV-exposed infants. J Antimicrob Chemother. 2017;72(7):2028–34. doi:10.1093/jac/dkx112.
  100. Mngqibisa R, Kendall MA, Dooley K, Wu X (Shirley), Firnhaber C, Mcilleron H et al. Pharmacokinetics and pharmacodynamics of depot medroxyprogesterone acetate in African women receiving treatment for human immunodeficiency virus and tuberculosis: potential concern for standard dosing frequency. Clin Infect Dis. 2020;71(3):517–24. doi:10.1093/cid/ciz863.
  101. Sadaphal P, Astemborski J, Graham NMH, Sheely L, Bonds M, Madison A et al. Isoniazid preventive therapy, hepatitis C virus infection, and hepatotoxicity among injection drug users infected with Mycobacterium tuberculosis. Clin Infect Dis. 2001;33(10):1687–91. doi:10.1086/323896.
  102. Hoffmann CJ, Charalambous S, Thio CL, Martin DJ, Pemba L, Fielding KL et al. Hepatotoxicity in an African antiretroviral therapy cohort: the effect of tuberculosis and hepatitis B. AIDS. 2007;21(10):1301–8. doi:10.1097/QAD.0b013e32814e6b08.
  103. Ahmed A, Lutchman GA, Kwo PY. Drug-drug interactions in hepatitis C virus treatment: Do they really matter? Clin Liver Dis (Hoboken). 2017;10(5):111–5. doi:10.1002/cld.668.
  104. Kempker RR, Alghamdi WA, Al-Shaer MH, Burch G, Peloquin CA. A pharmacology perspective of simultaneous tuberculosis and hepatitis C treatment. Antimicrob Agents Chemother. 2019;63(12):e01215–
    19. doi:10.1128/AAC.01215–19.
  105. Friedland G. Infectious disease comorbidities adversely affecting substance users with HIV: hepatitis C and tuberculosis. J Acquir Immune Defic Syndr. 2010;55 Suppl 1(0 1):S37–42. doi:10.1097/QAI.0b013e3181f9c0b6.
  106. Deiss RG, Rodwell TC, Garfein RS. Tuberculosis and illicit drug use: review and update. Clin Infect Dis. 2009;48(1):72–82. doi:10.1086/594126.
  107. McCance-Katz EF, Moody DE, Prathikanti S, Friedland G, Rainey PM. Rifampin, but not rifabutin, may produce opiate withdrawal in buprenorphine-maintained patients. Drug Alcohol Depend. 2011;118 (2–3):326–34. doi:10.1016/j.drugalcdep.2011.04.013.
  108. An activist’s guide to rifapentine for the treatment of TB infection. New York: Treatment Action Group; undated (https://www.treatmentactiongroup.org/publication/an-activists-guide-to-rifapentine-for-the-treatment-of-tb-infection/).
  109. Teo AKJ, Morishita F, Islam T, Viney K, Ong CWM, Kato S et al. Tuberculosis in older adults: challenges and best practices in the Western Pacific Region. Lancet Reg Health West Pac. 2023;36:100770. doi:10.1016/j. lanwpc.2023.100770.
  110. Golub JE, Cohn S, Saraceni V, Cavalcante SC, Pacheco AG, Moulton LH et al. Long-term protection from isoniazid preventive therapy for tuberculosis in HIV-infected patients in a medium-burden tuberculosis setting: the TB/HIV in Rio (THRio) study. Clin Infect Dis. 2015;60(4):639–45. doi:10.1093/cid/ciu849.
  111. Churchyard GJ, Fielding KL, Lewis JJ, Coetzee L, Corbett EL, Godfrey-Faussett P et al. A trial of mass isoniazid preventive therapy for tuberculosis control. N Engl J Med. 2014;370(4):301–10. doi:10.1056/ NEJMoa1214289.
  112. Kyaw NTT, Kumar AMV, Kyaw KWY, Satyanarayana S, Magee MJ, Min AC et al. IPT in people living with HIV in Myanmar: a five-fold decrease in incidence of TB disease and all-cause mortality. Int J Tuberc Lung Dis. 2019;23(3):322–30. doi:10.5588/ijtld.18.04.0488.
  113. Wisaksana R, Hartantri Y, Lestari M, Azzahra D, Karjadi T, Yunihastuti E. Benefit of isoniazid preventive therapy to reduce incident TB, mortality and loss to follow-up in Indonesian five-years cohort (Abstract 8205). In: 22nd International AIDS Conference, Amsterdam, the Netherlands, 23–27 July 2018 (AIDS 2018) (https://www.aids2018.org/Portals/4/File/AIDS2018_Abstract_book67ed.pdf).
  114. Comstock GW. Isoniazid prophylaxis in an undeveloped area. Am Rev Respir Dis. 1962;86:810–22. doi:10.1164/arrd.1962.86.6.810.
  115. Shanaube K, Sismanidis C, Ayles H, Beyers N, Schaap A, Lawrence KA et al. Annual risk of tuberculous infection using different methods in communities with a high prevalence of TB and HIV in Zambia and South Africa. PloS One. 2009;4(11):e7749. doi:10.1371/journal.pne.0007749.
  116. Comstock GW, Baum C, Snider DE. Isoniazid prophylaxis among Alaskan Eskimos: a final report of the bethel isoniazid studies. Am Rev Respir Dis. 1979;119(5):827–30. doi:10.1164/arrd.1979.119.5.827.
  117. International Union Against Tuberculosis Committee on Prophylaxis. Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial. International Union Against Tuberculosis Committee on Prophylaxis. Bull World Health Organ. 1982;60(4):555–64. PMID:6754120.
  118. Comstock GW. How much isoniazid is needed for prevention of tuberculosis among immunocompetent adults? Int J Tuberc Lung Dis. 1999 Oct;3(10):847–50. PMID:10524579.
  119. Smieja M, Marchetti C, Cook D, Smaill FM. Isoniazid for preventing tuberculosis in non-HIV infected persons. Cochrane Database Syst Rev. 1999; CD001363. doi:10.1002/14651858.CD001363.
  120. Churchyard G, Cárdenas V, Chihota V, Mngadi K, Sebe M, Brumskine W et al. Annual tuberculosis preventive therapy for persons with HIV infection: a randomized trial. Ann Intern Med. 2021;174(10):1367–76. doi:10.7326/M20–7577.
  121. Balcells ME, Thomas SL, Godfrey-Faussett P, Grant AD. Isoniazid preventive therapy and risk for resistant tuberculosis. Emerg Infect Dis. 2006;12(5):744–51. doi:10.3201/eid1205.050681.
  122. Den Boon S, Matteelli A, Getahun H. Rifampicin resistance after treatment for latent tuberculous infection: a systematic review and meta-analysis. Int J Tuberc Lung Dis. 2016;20(8):1065–71. doi:10.5588/ijtild.15.0908.
  123. van Halsema CL, Fielding KL, Chihota VN, Russell EC, Lewis JJC, Churchyard GJ et al. Tuberculosis outcomes and drug susceptibility in individuals exposed to isoniazid preventive therapy in a high HIV prevalence setting. AIDS. 2010;24(7):1051–5. doi:10.1097/QAD.0b013e32833849df.
  124. Federal counselor opinion No. 40/2023/COFEN. Brasilia: Conselho Federal de Enfermagem [Federal Nursing Council]; 2023 (https://www.cofen.gov.br/parecer-de-conselheiro-federal-no-40-2023-cofen/).
  125. Nota informativa conjunta N.o 3/2024. Recomanações técnicas para enfermeiros sobre como interpretar resultados e algoritmos do IGRA para identificação e triagem de ILTB, bem como recomendações sobre seu tratamento [Joint Informative Note No. 3/2024. Technical recommendations for nurses on how to interpret IGRA results and algorithms for identifying and screening LTBI, as well as recommendations on its treatment]. Brasilia: Departamento de HIV, Tuberculose, hepatities Virais e Infecções Sexualemente Transmissiveis; 2024 (https://www.gov.br/aids/pt-br/central-de-conteudo/notas-informativas/2024/nota-informativa-no-42024-cgtm-dathisvsa.pdf).
  126. Sotgiu G, Matteelli A, Getahun H, Girardi E, Sañé Schepisi M, Centis R et al. Monitoring toxicity in individuals receiving treatment for latent tuberculosis infection: a systematic review versus expert opinion. Eur Respir J. 2015;45(4):1170–3. doi:10.1183/09031936.00216814.
  127. Webinar: Leveraging differentiated ART delivery models for tuberculosis preventive therapy. Geneva: International AIDS Society; 2019 (https://www.differentiatedservicedelivery.org/resources/webinar-leveraging-differentiated-art-delivery-models-for-tuberculosis-preventive-therapy/).
  128. Issue brief: Differentiated models of delivering HIV care: Perspectives from people living with HIV and health care workers in 7 African countries. AIDS & Rights Alliance for Southern Africa; International Treatment Preparedness Coalition; 2016 (https://cquin.icap.columbia.edu/wp-content/uploads/2017/05/ICAP_CQUIN_issue-brief_differentiated-care_perspectives_2016.pdf).
  129. Stagg HR, Zenner D, Harris RJ, Muñoz L, Lipman MC, Abubakar I. Treatment of latent tuberculosis infection: a network meta-analysis. Ann Intern Med. 2014;161(6):419. doi:10.7326/M14–1019.
  130. Pease C, Hutton B, Yazdi F, Wolfe D, Hamel C, Barbeau,P et al. A systematic review of adverse events of rifapentine and isoniazid compared to other treatments for latent tuberculosis infection. Pharmacoepidemiol Drug Saf. 2018;27(6):557–66. doi:10.1002/pds.44233.
  131. Melnychuk L, Perlman-Arrow S, Lisboa Bastos M, Menzies D. A systematic review and meta-analysis of tuberculous preventative therapy adverse events. Clin Infect Dis. 2023;77(2):287–94. doi:10.1093/cid/ ciad246.
  132. Aquinas, SM, Allan, WGL, Horsfall, PAL, Jenkins, PK, Hug-Yan, W, Girling, D et al. Adverse reactions to daily and intermittent rifampicin regimens for pulmonary tuberculosis in Hong Kong. Br Med J. 1972;1(5803):765–71. doi:10.1136/bmj.1.5803.765.
  133. Grosset J, Leventis, S. Adverse effects of rifampin. Rev Infect Dis. 1983;5(Suppl 3):S440–50. doi:10.1093/ clinids/5.supplement_3.s440.
  134. Weiner M, Savic RM, Kenzie WRM, Wing D, Peloquin CA, Engle M et al. Rifapentine pharmacokinetics and tolerability in children and adults treated once weekly with rifapentine and isoniazid for latent tuberculosis infection. J Pediatr Infect Dis Soc. 2014;3(2):132–45. doi:10.1093/jpids/pito77.
  135. Sterling, TR, Moro RN, Borisov AS, Phillips, E Shepherd G, Adkinson NF et al. Flu-like and other systemic drug reactions among persons receiving weekly rifapentine plus isoniazid or daily isoniazid for treatment of latent tuberculosis infection in the PREVENT Tuberculosis Study. Clin Infect Dis. 2015;61(4):527–35. doi:10.1093/cid/civ323.
  136. Approval Package for: Application number 21–024/S008. PRIFTIN® rifapentine. Silver Spring (MD): Center for Drug Evaluation, US Food and Drug Administration; 2009 (https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/021024Orig1s008.pdf).
  137. Nitrosamine concerns for rifapentine and rifampicin. Geneva: Prequalification of Medical Products, World Health Organization; 2020 (https://extranet.who.int/prequal/news/nitrosamine-concerns-rifapentine-and-rifampicin).
  138. Nitrosamine concerns for Priftin (rifapentine) – update. Geneva: Prequalification of Medical Products, World Health Organization; 30 October 2020. (https://extranet.who.int/prequal/news/nitrosamine-concerns-priftin-rifapentine-update).
  139. Nitrosamines and TB medicines information note and patient FAQs. New York: Treatment Action Group; 2024 (https://www.treatmentactiongroup.org/publication/nitrosamines-and-tb-medicines-information-note-and-patient-faqs/).
  140. FDA updates and press announcements on nitrosamines in rifampin and rifapentine. Silver Spring (MD): US Food and Drug Administration; 2020 (https://www.fda.gov/drugs/drug-safety-and-availability/fda-works-mitigate-shortages-rifampin-and-rifapentine-after-manufacturers-find-nitrosamine).
  141. WHO consolidated guidelines on tuberculosis. Module 4: treatment – drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization; 2022 (https://www.who.int/publications/i/item/9789240063129).
  142. FDA reinforces safety information about serious low blood sugar levels and mental health side effects with fluoroquinolone antibiotics; requires label changes. Silver Spring (MD): US Food and Drug Administration; 2019 (https://www.fda.gov/drugs/drug-safety-and-availability/fda-reinforces-safety-information-about-serious-low-blood-sugar-levels-and-mental-health-side).
  143. Disabling and potentially permanent side effects lead to suspension or restrictions of quinolone and fluoroquinolone antibiotics. Amsterdam: European Medicines Agency; 2019 (https://www.ema.europa.eu/en/documents/referral/quinolone-fluoroquinolone-article-31-referral-disabling-potentially-permanent-side-effects-lead_en.pdf).
  144. Fluoroquinolone antibiotics: must now only be prescribed when other commonly recommended antibiotics are inappropriate. London: Medicines and Healthcare products Regulatory Agency; 2024 (https://www.gov.uk/drug-safety-update/fluoroquinolone-antibiotics-must-now-only-be-prescribed-when-other-commonly-recommended-antibiotics-are-inappropriate).
  145. Langendam MW, Tiemersma EW, Van Der Werf MJ, Sandgren A. Adverse events in healthy individuals and MDR-TB contacts treated with anti-tuberculosis drugs potentially effective for preventive development of MDR-TB: a systematic review. PLoS One. 2013;8(1):e53599. doi:10.1371/journal.pone.0053599.
  146. Alves C, Mendes D, Batel Marques F. Fluoroquinolones and the risk of tendon injury: a systematic review and meta-analysis. 2019;75(10):1431–43. doi:10.1007/s00228–019–02713–1.
  147. Pellagra and its prevention and control in major emergencies. Geneva: World Health Organization; 2000 (https://www.who.int/publications-detail-redirect/WHO-NHD-00.10).
  148. Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327–41. doi:10.2165/00003088–200140050–00002.
  149. Consolidated guidelines on HIV prevention, testing, treatment, service delivery and monitoring: recommendations for a public health approach. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/item/9789240031593).
  150. Dooley KE, Kaplan R, Mwelase N, Grinsztejn B, Ticona E, Lacerda M et al. Dolutegravir-based antiretroviral therapy for patients coinfected with tuberculosis and human immunodeficiency virus: a multicenter, noncomparative, open-label, randomized trial. Clin Infect Dis. 2020;70(4):549–56. doi:10.1093/cid/ciz256.
  151. Podany AT, Bao Y, Swindells S, Chaisson RE, Andersen JW, Mwelase T et al. Efavirenz pharmacokinetics and pharmacodynamics in HIV-infected persons receiving rifapentine and isoniazid for tuberculosis prevention. Clin Infect Dis. 2015;61(8):1322–7. doi:10.1093/cid/civ464.
  152. Weiner M, Egelund EF, Engle M, Kiser M, Prihoda TJ, Gelfond JAL et al. Pharmacokinetic interaction of rifapentine and raltegravir in healthy volunteers. J Antimicrob Chemother. 2014;69(4):1079–85. doi:10.1093/ jac/dkt483.
  153. HIV Drug Interactions. University of Liverpool (https://www.hiv-druginteractions.org/checker).
  154. van Lunzen J, Maggiolo F, Arribas JR, Rakhmanova A, Yeni P, Young B et al. Once daily dolutegravir (S/ GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect Dis. 2012;12(2):111–8. doi:10.1016/S1473–3099(11)70290–0.
  155. Dooley KE, Savic R, Gupte A, Marzinke MA, Zhang N, Edward VA et al. Once-weekly rifapentine and isoniazid for tuberculosis prevention in patients with HIV taking dolutegravir-based antiretroviral therapy: a phase 1/2 trial. Lancet HIV. 2020;7(6):e401–9. doi:10.106/S2352–3018(20)30032–1.
  156. Lin KY, Sun HY, Yang CJ, Lu PL, Lee YT, Lee NY et al. Treatment responses to integrase strand-transfer inhibitor-containing antiretroviral regimens in combination with short-course rifapentine-based regimens for latent tuberculosis infection among people with human immunodeficiency virus. Clin Infect Dis. 2024;78(5):1295–1303. doi:10.1093/cid/ciad730.
  157. Chaisson LH, Semitala FC, Nangobi F, Steinmetz S, Marquez C, Armstrong DT et al. Viral suppression among adults with HIV receiving routine dolutegravir-based antiretroviral therapy and 3 months weekly isoniazid-rifapentine. AIDS. 2023;37(7):1097–101. doi:10.1097/QAD.0000000000003508.
  158. Weld E, Salles I, Nonyane A, Sebe M, Beattie T, Mapendere M et al. DOLPHIN TOO, weekly rifapentine and isoniazid for TB prevention in ART-naïve people with HIV initiating dolutegravir-based ART: a phase 1/2 study. In: World Conference on Lung Health 2023, Paris, France; 2023 (https://documents.theunion.org/web-uploads/UNION2023_Abstracts_High.pdf).
  159. López-Cortés LF, Ruiz-Valderas R, Viciana P, Alarcón-González A, Gómez-Mateos J, León-Jimenez E et al. Pharmacokinetic interactions between efavirenz and rifampicin in HIV-infected patients with tuberculosis. Clin Pharmacokinet. 2002;41(9):681–90. doi:10.2165/00003088–200241090–00004.
  160. Luetkemeyer AF, Rosenkranz SL, Lu D, Marzan F, Ive P, Hogg E et al. Relationship between weight, efavirenz exposure, and virologic suppression in HIV-infected patients on rifampin-based tuberculosis treatment in the AIDS Clinical Trials Group A5221 STRIDE Study. Clin Infect Dis. 2013;57(4):586–93. doi:10.1093/cid/cit246.
  161. Farenc C, Doroumian S, Cantalloube C, Perrin L, Esposito V, Cieren-Puiseux I et al. Rifapentine once-weekly dosing effect on efavirenz, emtricitabine and tenofovir pharmacokinetics (Poster 493). In: Conference on Retroviruses and Opportunistic Infections, Seattle, Washington, 4 March 2019 (https://www.croiconference.org/wp-content/uploads/sites/2/posters/2014/493.pdf).
  162. Medication Guide. DESCOVY® (des-KOH-vee) (emtricitabine and tenofovir alafenamide) tablets. Foster City (CA): Gilead Sciences (https://www.gilead.com/-/media/files/pdfs/medicines/hiv/descovy/ descovy_patient_pi.pdf).
  163. Cerrone M, Alfarisi O, Neary M, Marzinke MA, Parsons TL, Owen A et al. Rifampicin effect on intracellular and plasma pharmacokinetics of tenofovir alafenamide. J Antimicrob Chemother. 2019;74(6):1670–8. doi:10.1093/jac/dkz068.
  164. TPT implementation tools. Geneva: IMPAACT4TB (https://impaact4tb.org/tpt-tools/).
  165. Menzies D, Adjobimey M, Ruslami R, Trajman A, Sow O, Kim H et al. Four months of rifampin or nine months of isoniazid for latent tuberculosis in adults. N Engl J Med. 2018;379(5):440–53. doi:10.1056/ NEJMoa1714283.
  166. Sandul AL, Nwana N, Holcombe JM, Lobato MN, Marks S, Webb R et al. High rate of treatment completion in program settings with 12-dose weekly isoniazid and rifapentine for latent Mycobacterium tuberculosis infection. Clin Infect Dis. 2017;65(7):1085–93. doi:10.1093.cid/cix505.
  167. Australian New Zealand Clinical trials registry. Camperdown (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=369817&showOriginal=true&isReview=true).
  168. Getahun H, Matteelli A, Abubakar I, Aziz MA, Baddeley A, Barreira D et al. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries. Eur Respir J. 2015;46(6):1563–76. doi:10.1183/13993003.01245–2015.
  169. WHO consolidated guidelines on tuberculosis: Module 4: treatment – tuberculosis care and support. Geneva: World Health Organization; 2022 (https://iris.who.int/bitstream/handle/10665/353399/9789240047716-eng.pdf).
  170. Best practice for the care of patients with tuberculosis. A guide for low-income countries. Second edition. Paris: International Union Against Tuberculosis and Lung Disease; 2017 (https://theunion.org/sites/default/files/2020–08/TheUnionTB_BestPracticeGuide2017.pdf).
  171. Lutge, EE, Wiysonge CS, Knight, Stephen E, Sinclair D, Volmink J. Incentives and enablers to improve adherence in tuberculosis. Cochrane Database Syst Rev. 2015;9:CD007952. doi:10.1002/14651858. CD007952.pub3.
  172. Palacio, A, Garay, D, Langer, B, Taylor, J, Wood, BA, Tamariz, L. Motivational interviewing improves medication adherence: a systematic review and meta-analysis. J Gen Intern Med. 2016;31(8):929–40. doi:10.1007/ s11606–016–3685–3.
  173. World Bank Open Data. Washington DC: World Bank;2024 (https://data.worldbank.org/).
  174. Ethics guidance for the implementation of the End TB Strategy (WHO/HTM/TB/2017.07). Geneva: World Health Organization; 2017 (http://apps.who.int/iris/bitstream/10665/254820/1/9789241512114-eng.pdf).
  175. Palacios CF, Hough MA, Shrestha R, Moll AP, Kompala T, Andrews L et al. Perceived stigma related to TB preventive therapy. Int J Tuberc Lung Dis. 2023;27(3):209–14. doi:10.5588/ijtld.22.0570.

Book navigation