References

  1. Global tuberculosis report 2019 (WHO/CDS/TB/2019.15). Geneva World Health Organization; 2019 (https://www.who.int/tb/publications/global_report/en/).
  2. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization; 2014 (https://apps.who.int/iris/bitstream/handle/10665/130918/9789241548809_eng.pdf).
  3. WHO operational handbook on tuberculosis. Module 4: treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240006997).
  4. Guidelines for the management of drug-resistant tuberculosis (WHO/TB/96.210 Rev.1). Geneva World Health Organization; 1997 (https://apps.who.int/iris/bitstream/handle/10665/63465/WHO_TB_96.210_(Rev.1).pdf;jsessionid=20AD8869DC687E069E0D25D8267E4025?sequence=1).
  5. Guidelines for establishing DOTS-Plus pilot projects for the management of multidrug-resistant tuberculosis (MDR-TB) (WHO/CDS/TB/2000.279). Geneva: World Health Organization; 2000 (https://apps.who.int/iris/bitstream/handle/10665/66368/WHO_CDS_TB_2000.279.pdf?sequence=1).
  6. Guidelines for the programmatic management of drug-resistant tuberculosis (WHO/HTM/TB/2006.361). Geneva: World Health Organization; 2006 (https://apps.who.int/iris/handle/10665/246249).
  7. Guidelines for the programmatic management of drug-resistant tuberculosis – emergency update (WHO/HTM/TB/2008.402). Geneva: World Health Organization; 2008 (https://apps.who.int/iris/handle/10665/43965).
  8. Guidelines for the programmatic management of drug-resistant tuberculosis, 2011 update (WHO/HTM/TB/2011.6). Geneva, Switzerland: World Health Organization; 2011 (https://www.who.int/publications/i/item/9789241501583).
  9. The use of bedaquiline in the treatment of multidrug-resistant tuberculosis. Interim policy guidance (WHO/HTM/TB/2013.6). Geneva: World Health Organization; 2013 (https://apps.who.int/iris/handle/10665/84879).
  10. The use of delamanid in the treatment of multidrug-resistant tuberculosis. Interim policy guidance (WHO/HTM/TB2014.23). Geneva: World Health Organization; 2014 (https://apps.who.int/iris/handle/10665/137334).
  11. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update (WHO/HTM/TB/2016.4). Geneva World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf?sequence=1).
  12. WHO consolidated guidelines on drug resistant tuberculosis treatment. Geneva: World Health Organization; 2019 (https://apps.who.int/iris/bitstream/handle/10665/311389/9789241550529-eng.pdf?ua=1).
  13. The use of delamanid in the treatment of multidrug-resistant tuberculosis. Interim policy guidance (WHO/HTM/TB/2014.23). Geneva World Health Organization; 2014 (https://apps.who.int/iris/bitstream/handle/10665/137334/WHO_HTM_TB_2014.23_eng.pdf?sequence=1).
  14. Van Deun A, Maug AKJ, Salim MAH, Das PK, Sarker MR, Daru P et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2010;182:684–92. doi: https://doi.org/10.1164/rccm.201001-0077OC.
  15. Kuaban C, Noeske J, Rieder HL, Aït-Khaled N, Abena Foe JL, Trébucq A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis. 2015;19:517–24. doi: https://doi.org/10.5588/ijtld.14.0535.
  16. Trébucq A, Schwoebel V, Kashongwe Z, Bakayoko A, Kuaban C, Noeske J et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int J Tuberc Lung Dis. 2018;22:17–25. doi: https://doi.org/10.5588/ijtld.17.0498.
  17. Piubello A, Harouna SH, Souleymane MB, Boukary I, Morou S, Daouda M et al. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int J Tuberc Lung Dis. 2014;18:1188–94. doi: https://doi.org/10.5588/ijtld.13.0075.
  18. Nunn AJ, Phillips PP, Meredith SK, Chiang C-Y, Conradie F, Dalai D et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med. 2019;380:1201–13. doi: https://doi.org/10.1056/NEJMoa1811867.
  19. Position statement on the continued use of the shorter MDR-TB regimen following an expedited review of the STREAM Stage 1 preliminary results (WHO/CDS/TB/2018.2). Geneva World Health Organization; 2018 (https://www.who.int/publications/m/item/WHO-CDS-TB-2018.2).
  20. Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382:893–902. doi: https://doi.org/10.1056/NEJMoa1901814.
  21. Esmail A, Oelofse S, Lombard C, Perumal R, Mbuthini L, Goolam Mahomed A et al. An all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT Study). Am J Respir Crit Care Med. 2022;205:1214–27. doi: https://doi.org/10.1164/rccm.202107-1779OC.
  22. Conradie F, Bagdasaryan TR, Borisov S, Howell P, Mikiashvili L, Ngubane N et al. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N Engl J Med. 2022;387:810–23. doi: https://doi.org/10.1056/NEJMoa2119430.
  23. Salinger DH, Nedelman JR, Mendel C, Spigelman M, Hermann DJ. Daily dosing for Bedaquiline in patients with tuberculosis. Antimicrob Agents Chemother. 2019;63. doi: https://journals.asm.org/doi/10.1128/AAC.00463-19.
  24. Protocol title: a Phase 3 partially-blinded, randomized trial assessing the safety and efficacy of various doses and treatment durations of linezolid plus bedaquiline and pretomanid in participants with pulmonary infection of either extensively drug-resistant tuberculosis (XDR-TB), pre-XDR-TB or treatment intolerant or non-responsive multi-drug resistant tuberculosis (MDR-TB). 2020.
  25. Nunn AJ, Phillips PP, Mitchison DA. Timing of relapse in short-course chemotherapy trials for tuberculosis. Int J Tuberc Lung Dis. 2010;14:241–2. doi: http://www.ncbi.nlm.nih.gov/pubmed/20074418.
  26. Gomez GB, Siapka M, Conradie F, Ndjeka N, Garfin AMC, Lomtadze N et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines. BMJ Open. 2021;11. doi: https://doi.org/10.1136/bmjopen-2021-051521.
  27. Mulder C, Rupert S, Setiawan E, Mambetova E, Edo P, Sugiharto J et al. Budgetary impact of using BPaL for treating extensively drug-resistant tuberculosis. BMJ Global Health. 2022;7. doi: https://doi.org/10.1136/bmjgh-2021-007182.
  28. Sweeney S. TB-PRACTECAL innovating MDR-TB treatment - preliminary cost-effectiveness analysis 2022.
  29. van de Berg SEJ, Pelzer PT, van der Land AJ, Abdrakhmanova E, Ozi AM, Arias M et al. Acceptability, feasibility, and likelihood of stakeholders implementing the novel BPaL regimen to treat extensively drug-resistant tuberculosis patients. BMC Public Health. 2021;21. doi: https://doi.org/10.1186/s12889-021-11427-y.
  30. Stringer B, Lowton K, James N, Nyang’wa BT. Capturing patient-reported and quality of life outcomes with use of shorter regimens for drug-resistant tuberculosis: mixed-methods substudy protocol, TB PRACTECAL-PRO. BMJ Open. 2021;11. doi: https://doi.org/10.1136/bmjopen-2020-043954.
  31. WHO consolidated guidelines on tuberculosis. Module 5: management of tuberculosis in children and adolescents. Geneva: World Health Organization; 2022.
  32. Drug approval package: Pretomanid [website]. Maryland, United States of America: US Food and Drug Administration; 2019 (https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212862Orig1s000TOC.cfm).
  33. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Geneva: World Health Organization; 2013 (https://apps.who.int/iris/bitstream/handle/10665/112472/9789241506335_eng.pdf?sequence=1).
  34. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs: policy guidance Geneva: World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/246131/9789241510561-eng.pdf?sequence=1).
  35. Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB. Geneva: World Health Organization; 2018 (https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5).
  36. HIV drug interactions [website]. Liverpool, United Kingdom: University of Liverpool; 2020 (https://www.hiv-druginteractions.org/checker).
  37. Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017 update (WHO/HTM/TB/2017.05). Geneva: World Health Organization; 2017 (https://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf?sequence=1).
  38. WHO consolidated guidelines on tuberculosis. Module 4: treatment – tuberculosis care and support. Geneva World Health Organization; 2022.
  39. ShORRT (Short, all-Oral Regimens for Rifampicin-resistant Tuberculosis) research package. Geneva: World Health Organization and the Special Programme for Research and Training in Tropical Diseases; 2015 (https://tdr.who.int/docs/librariesprovider10/brochures/all_oral_str_or_information_sheet_final.pdf?sfvrsn=59ffefbb_1).
  40. ZYVOX®. New York: Pfizer; 2010 (https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021130s022lbl.pdf).
  41. WHO consolidated guidelines on tuberculosis. Module 4: treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240007048).
  42. Ndjeka N, Campbell JR, Meintjes G, Maartens G, Schaaf HS, Hughes J et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infect Dis. 2022;22:1042–51. doi: https://doi.org/10.1016/S1473-3099(21)00811-2.
  43. Public call for individual patient data on treatment of drug-resistant tuberculosis. Geneva, World Health Organization. 2019 (https://www.who.int/news-room/articles-detail/public-call-for-individual-patient-data-on-treatment-of-drug-resistant-tuberculosis).
  44. Public call for individual patient data on treatment of drug-resistant tuberculosis. Geneva, World Health Organization. 2021 (https://www.who.int/news-room/articles-detail/public-call-for-individual-patient-data-on-treatment-of-drug-resistant-tuberculosis_06292021#_ftn1).
  45. Global Drug Facility (GDF) products catalog. Geneva: Stop TB Partnership; 2022 (https://www.stoptb.org/global-drug-facility-gdf/gdf-product-catalog).
  46. Brill MJE, Svensson EM, Pandie M, Maartens G, Karlsson MO. Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug-resistant tuberculosis. Int J Antimicrob Agents. 2017;49:212–7. doi: https://doi.org/10.1016/j.ijantimicag.2016.10.020.
  47. Svensson EM, Dooley KE, Karlsson MO. Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis-HIV coinfection. Antimicrob Agents Chemother. 2014;58:6406–12. doi: https://doi.org/10.1128/AAC.03246-14.
  48. Svensson EM, Aweeka F, Park J-G, Marzan F, Dooley KE, Karlsson MO. Model-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosis. Antimicrob Agents Chemother. 2013;57:2780–7. doi: https://doi.org/10.1128/AAC.00191-13.
  49. Cerrone M, Bracchi M, Wasserman S, Pozniak A, Meintjes G, Cohen K et al. Safety implications of combined antiretroviral and anti-tuberculosis drugs. Expert Opin Drug Saf. 2020;19:23–41. doi: https://doi.org/10.1080/14740338.2020.1694901.
  50. Acquah R, Mohr-Holland E, Daniels J, Furin J, Loveday M, Mudaly V et al. Outcomes of children born to pregnant women with drug-resistant tuberculosis treated with novel drugs in Khayelitsha, South Africa: a report of five patients. Pediatr Infect Dis J. 2021;40:e191–e2. doi: https://doi.org/10.1097/inf.0000000000003069.
  51. Loveday M, Hughes J, Sunkari B, Master I, Hlangu S, Reddy T et al. Maternal and infant outcomes among pregnant women treated for multidrug/rifampicin-resistant tuberculosis in South Africa. Clin Infect Dis. 2020;Published online 6 March 2020. doi: https://doi.org/10.1093/cid/ciaa189.
  52. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs: policy guidance [WHO/HTM/TB/2016.07]. Geneva: World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/246131/9789241510561-eng.pdf?sequence=1).
  53. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide (WHO/CDS/TB/2018.19). Geneva: World Health Organization; 2018 (https://apps.who.int/iris/bitstream/handle/10665/274443/WHO-CDS-TB-2018.19-eng.pdf).
  54. Borisov S, Danila E, Maryandyshev A, Dalcolmo M, Miliauskas S, Kuksa L et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: first global report. Eur Respir J. 2019;54:1901522. doi: https://doi.org/10.1183/13993003.01522-2019.
  55. Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012;9:e1001300. doi: https://doi.org/10.1371/journal.pmed.1001300.
  56. Harausz EP, Garcia-Prats AJ, Law S, Schaaf HS, Kredo T, Seddon JA et al. Treatment and outcomes in children with multidrug-resistant tuberculosis: a systematic review and individual patient data meta-analysis. PLoS Med. 2018;15:e1002591. doi: https://doi.org/10.1371/journal.pmed.1002591.
  57. Ahmad N, Ahuja SD, Akkerman OW, Alffenaar J-WC, Anderson LF, Baghaei P et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018;392:821–34. doi: https://doi.org/10.1016/S0140-6736(18)31644-1.
  58. Seddon JA, Hesseling AC, Godfrey-Faussett P, Schaaf HS. High treatment success in children treated for multidrug-resistant tuberculosis: an observational cohort study. Thorax. 2014;69:458–64. doi: https://doi.org/10.1136/thoraxjnl-2013-203900.
  59. Public call for individual patient data on treatment of rifampicin and multidrug-resistant (MDR/RR-TB) tuberculosis [website]. Geneva: World Health Organization; 2018 (https://www.who.int/news/item/16-02-2018-public-call-for-individual-patient-data-on-treatment-of-rifampicin-and-multidrug-resistant-(mdr-rr-tb)-tuberculosis).
  60. Safety and efficacy trial of delamanid for 6 months in patients with multidrug resistant tuberculosis. Otsuka Pharmaceutical Development & Commercialization, Inc.; 2016 (https://clinicaltrials.gov/ct2/show/NCT01424670).
  61. von Groote-Bidlingmaier F, Patientia R, Sanchez E, Balanag V, Ticona E, Segura P et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group Phase 3 trial. Lancet Respir Med. 2019;7:249–59. doi: https://doi.org/10.1016/S2213-2600(18)30426-0.
  62. Khan U, Huerga H, Khan AJ, Mitnick CD, Hewison C, Varaine F et al. The endTB observational study protocol: treatment of MDR-TB with bedaquiline or delamanid containing regimens. BMC Infect Dis. 2019;19. doi: https://doi.org/10.1186/s12879-019-4378-4.
  63. Svensson EM, du Bois J, Kitshoff R, de Jager VR, Wiesner L, Norman J et al. Relative bioavailability of bedaquiline tablets suspended in water: implications for dosing in children. Br J Clin Pharmacol. 2018;84:2384–92.
  64. The use of delamanid in the treatment of multidrug-resistant tuberculosis in children and adolescents: interim policy guidance. Geneva: World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/250614/9789241549899-eng.pdf?sequence=1).
  65. WHO best-practice statement on the off-label use of bedaquiline and delamanid for the treatment of multidrug-resistant tuberculosis (WHO/HTM/TB/2017.20). Geneva World Health Organization; 2017 (https://apps.who.int/iris/bitstream/handle/10665/258941/WHO-HTM-TB-2017.20-eng.pdf?sequence=1).
  66. Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020;8:383–94. doi: https://doi.org/10.1016/S2213-2600(20)30047-3.
  67. Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J. 2015;45:161–70. doi: https://doi.org/10.1183/09031936.00035114.
  68. Dooley KE, Miyahara S, von Groote-Bidlingmaier F, Sun X, Hafner R, Rosenkranz SL et al. Early bactericidal activity of different isoniazid doses for drug resistant TB (INHindsight): a randomized open-label clinical trial. Am J Respir Crit Care Med. 2020;201:1416–24. doi: https://doi.org/10.1164/rccm.201910-1960OC.
  69. Thwaites GE, Bhavnani SM, Chau TTH, Hammel JP, Torok ME, Van Wart SA et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55:3244–53. doi: https://doi.org/10.1128/AAC.00064-11.
  70. Donald PR. The chemotherapy of tuberculous meningitis in children and adults. Tuberculosis. 2010;90:375–92. doi: https://doi.org/10.1016/j.tube.2010.07.003.
  71. Sun F, Ruan Q, Wang J, Chen S, Jin J, Shao L et al. Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother. 2014;58:6297–301. doi: https://doi.org/10.1128/AAC.02784-14.
  72. Akkerman OW, Odish OF, Bolhuis MS, de Lange WC, Kremer HP, Luijckx G-JR et al. Pharmacokinetics of bedaquiline in cerebrospinal fluid and serum in multidrug-resistant tuberculous meningitis. Clin Infect Dis. 2016;62:523–4. doi: https://doi.org/10.1093/cid/civ921.
  73. Tucker EW, Pieterse L, Zimmerman MD, Udwadia ZF, Peloquin CA, Gler MT et al. Delamanid central nervous system pharmacokinetics in tuberculous meningitis in rabbits and humans. Antimicrob Agents Chemother. 2019;63:e00913–19. doi: https://doi.org/10.1128/AAC.00913-19.
  74. Holdiness MR. Cerebrospinal fluid pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet. 1985;10:532–4. doi: https://doi.org/10.2165/00003088-198510060-00006.
  75. Linh NN, Viney K, Gegia M, Falzon D, Glaziou P, Floyd K et al. World Health Organization treatment outcome definitions for tuberculosis: 2021 update. Eur Respir J. 2021;58. doi: https://doi.org/10.1183/13993003.00804-2021.
  76. United States Food and Drug Administration. Sirturo (bedaquiline) label [website]. Maryland, United States of America: United States Food and Drug Administration; 2012 (https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/204384s000lbl.pdf).
  77. WHO model list of essential medicines - 22nd list, 2021. Geneva: World Health Organization; 2021 (https://www.who.int/medicines/publications/essentialmedicines/en/).
  78. Mao Y, Dai D, Jin H, Wang Y. The risk factors of linezolid-induced lactic acidosis: a case report and review. Med. 2018;97:e12114. doi: https://doi.org/10.1097/MD.0000000000012114.
  79. Hornik CP, Herring AH, Benjamin DK, Capparelli EV, Kearns GL, van den Anker J et al. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32:748–53. doi: https://doi.org/10.1097/INF.0b013e31828be70b.
  80. Electronic recording and reporting for tuberculosis care and control (WHO/HTM/TB/2011.22). Geneva: World Health Organization; 2012 (https://apps.who.int/iris/handle/10665/44840).
  81. Escalante P, Graviss EA, Griffith DE, Musser JM, Awe RJ. Treatment of isoniazid-resistant tuberculosis in southeastern Texas. Chest. 2001;119:1730–6. doi: https://doi.org/10.1378/chest.119.6.1730.
  82. Nolan C, Goldberg S. Treatment of isoniazid-resistant tuberculosis with isoniazid, rifampin, ethambutol, and pyrazinamide for 6 months. Int J Tuberc Lung Dis. 2002;6:952–8. doi: https://pubmed.ncbi.nlm.nih.gov/12475140/.
  83. Kim YH, Suh GY, Chung MP, Kim H, Kwon OJ, Lim SY et al. Treatment of isoniazid-resistant pulmonary tuberculosis. BMC Infect Dis. 2008;8. doi: https://doi.org/10.1186/1471-2334-8-6.
  84. Fregonese F, Ahuja SD, Akkerman OW, Arakaki-Sanchez D, Ayakaka I, Baghaei P et al. Comparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2018;6:265–75. doi: https://doi.org/10.1016/S2213-2600(18)30078-X.
  85. Andrade RJ, Tulkens PM. Hepatic safety of antibiotics used in primary care. J Antimicrob Chemother. 2011;66:1431–46. doi: https://doi.org/10.1093/jac/dkr159.
  86. Centers for Disease Control and Prevention. Update. Fatal and severe liver injuries associated with rifampin and pyrazinamide for latent tuberculosis infection, and revisions in American Thoracic Society/CDC recommendations-United States, 2001. MMWR Morb Mortal Wkly. 2001;50:733–5. doi: https://pubmed.ncbi.nlm.nih.gov/11787580/.
  87. Voogt GR, Schoeman HS. Ototoxicity of aminoglycoside drugs in tuberculosis treatment. S Afr J Commun Disord. 1996;43:3–6. doi: https://pubmed.ncbi.nlm.nih.gov/9265840/.
  88. Gülbay BE, Gürkan ÖU, Yıldız ÖA, Önen ZP, Erkekol FÖ, Baççıoğlu A et al. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis. Respir Med. 2006;100:1834–42. doi: https://doi.org/10.1016/j.rmed.2006.01.014.
  89. Bloss E, Kukša L, Holtz TH, Riekstina V, Skripčonoka V, Kammerer S et al. Adverse events related to multidrug-resistant tuberculosis treatment, Latvia, 2000–2004. Int J Tuberc Lung Dis. 2010;14:275–81. doi: https://pubmed.ncbi.nlm.nih.gov/20132617/.
  90. Oxlade O, Falzon D, Menzies D. The impact and cost-effectiveness of strategies to detect drug-resistant tuberculosis. Eur Respir J. 2012;39:626–34. doi: https://doi.org/10.1183/09031936.00065311.
  91. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children (WHO/HTM/TB/2013.16). Geneva: World Health Organization; 2013 (https://apps.who.int/iris/bitstream/handle/10665/112472/9789241506335_eng.pdf?sequence=1).
  92. The use of molecular line probe assays for the detection of resistance to second-line anti-tuberculosis drugs: policy guidance (WHO/HTM/TB/2016.07). Geneva: World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/246131/9789241510561-eng.pdf?sequence=1).
  93. Bollela VR, Namburete NI, Feliciano CS, Macheque D, Harrison LH, Caminero J. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2016;20:1099–104. doi: https://doi.org/10.5588/ijtld.15.0864.
  94. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind S, LN F et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003;167:603–62. doi: https://doi.org/10.1164/rccm.167.4.603.
  95. Ahmad Khan F, Minion J, Al-Motairi A, Benedetti A, Harries AD, Menzies D. An updated systematic review and meta-analysis on the treatment of active tuberculosis in patients with HIV infection. Clin Infect Dis. 2012;55:1154–63. doi: https://doi.org/10.1093/cid/cis630.
  96. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach, 2nd edition. Geneva: World Health Organization; 2016 (https://apps.who.int/iris/bitstream/handle/10665/208825/9789241549684_eng.pdf?sequence=1).
  97. Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020.
  98. Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16:1185–92. doi: https://doi.org/10.1016/S1473-3099(16)30190-6.
  99. Ramachandran G, Kumar AKH, Srinivasan R, Geetharani A, Sugirda P, Nandhakumar B et al. Effect of rifampicin & isoniazid on the steady state pharmacokinetics of moxifloxacin. Indian J Med Res. 2012;136:979. doi: https://pubmed.ncbi.nlm.nih.gov/23391793/.
  100. Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997;32:101–19. doi: https://doi.org/10.2165/00003088-199732020-00002.
  101. Lempens P, Meehan CJ, Vandelannoote K, Fissette K, de Rijk P, Van Deun A et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep. 2018;8. doi: https://doi.org/10.1038/s41598-018-21378-x.
  102. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63:e147–e95. doi: https://doi.org/10.1093/cid/ciw376.
  103. WHO treatment guidelines for isoniazid-resistant tuberculosis. Supplement to the WHO treatment guidelines for drug-resistant tuberculosis (WHO/CDS/TB/2018.7). Geneva: World Health Organization; 2018 (https://apps.who.int/iris/bitstream/handle/10665/260494/9789241550079-eng.pdf).
  104. Guidance for national tuberculosis programmes on the management of tuberculosis in children (WHO/HTM/TB/2014.03). Geneva: World Health Organization; 2014 (https://apps.who.int/iris/bitstream/handle/10665/112360/9789241548748_eng.pdf?sequence=1).
  105. Kurbatova EV, Gammino VM, Bayona J, Becerra M, Danilovitz M, Falzon D et al. Frequency and type of microbiological monitoring of multidrug-resistant tuberculosis treatment. Int J Tuberc Lung Dis. 2011;15:1553–5. doi: https://doi.org/10.5588/ijtld.11.0101.
  106. Mitnick CD, White RA, Lu C, Rodriguez CA, Bayona J, Becerra MC et al. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method. Eur Respir J. 2016;48:1160–70. doi: https://doi.org/10.1183/13993003.00462-2016.
  107. Tuberculosis laboratory biosafety manual (WHO/HTM/ TB/2012.11). Geneva World Health Organization; 2012 (https://apps.who.int/iris/bitstream/handle/10665/77949/9789241504638_eng.pdf?sequence=1).
  108. Friedrich SO, Rachow A, Saathoff E, Singh K, Mangu CD, Dawson R et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med. 2013;1:462–70. doi: https://doi.org/10.1016/S2213-2600(13)70119-X.
  109. Jayakumar A, Savic RM, Everett CK, Benator D, Alland D, Heilig CM et al. Xpert MTB/RIF assay shows faster clearance of Mycobacterium tuberculosis DNA with higher levels of rifapentine exposure. J Clin Microbiol. 2016;54:3028–33. doi: https://doi.org/10.1128/JCM.01313-16.
  110. Burgos M, Gonzalez LC, Paz EA, Gournis E, Kawamura LM, Schecter G et al. Treatment of multidrug-resistant tuberculosis in San Francisco: an outpatient-based approach. Clin Infect Dis. 2005;40:968–75. doi: https://doi.org/10.1086/428582.
  111. Dheda K, Shean K, Zumla A, Badri M, Streicher EM, Page-Shipp L et al. Early treatment outcomes and HIV status of patients with extensively drug-resistant tuberculosis in South Africa: a retrospective cohort study. Lancet. 2010;375:1798–807. doi: https://doi.org/10.1016/S0140-6736(10)60492-8.
  112. Eker B, Ortmann J, Migliori GB, Sotgiu G, Muetterlein R, Centis R et al. Multidrug- and extensively drug-resistant tuberculosis, Germany. Emerg Infect Dis. 2008;14:1700–6. doi: https://doi.org/10.3201/eid1411.080729.
  113. El Sahly H, Teeter L, Pawlak R, Musser J, Graviss E. Drug-resistant tuberculosis: a disease of target populations in Houston, Texas. J Infect. 2006;53:5–11. doi: https://doi.org/10.1016/j.jinf.2005.10.002.
  114. Jamal L, Guibu I, Tancredi M, Ramalho M, Vasconcelos G, Cota I et al. Reliability and usefulness of TB/HIV co-infection data proceeding from developing countries. Bangkok, Thailand: International Conference on AIDS; 2004.
  115. Leimane V, Dravniece G, Riekstina V, Sture I, Kammerer S, Chen MP et al. Treatment outcome of multidrug/extensively drug-resistant tuberculosis in Latvia, 2000-2004. Eur Respir J. 2010;36:584–93. doi: https://doi.org/10.1183/09031936.00003710.
  116. Migliori GB, Besozzi G, Girardi E, Kliiman K, Lange C, Toungoussova OS et al. Clinical and operational value of the extensively drug-resistant tuberculosis definition. Eur Respir J. 2007;30:623–6. doi: https://doi.org/10.1183/09031936.00077307.
  117. Palmero D, Ritacco V, Ambroggi M, Poggi S, Güemes Gurtubay J, Alberti F et al. Multidrug-resistant tuberculosis in AIDS patients at the beginning of the millennium. Medicina. 2006;66:399–404. doi: https://pubmed.ncbi.nlm.nih.gov/17137168/.
  118. Shean KP, Willcox PA, Siwendu SN, Laserson KF, Gross L, Kammerer S et al. Treatment outcome and follow-up of multidrug-resistant tuberculosis patients, West Coast/Winelands, South Africa, 1992–2002. Int J Tuberc Lung Dis. 2008;12:1182–9. doi: https://pubmed.ncbi.nlm.nih.gov/18812049/.
  119. Varma JK, Nateniyom S, Akksilp S, Mankatittham W, Sirinak C, Sattayawuthipong W et al. HIV care and treatment factors associated with improved survival during TB treatment in Thailand: an observational study. BMC Infect Dis. 2009;9. doi: https://doi.org/10.1186/1471-2334-9-42.
  120. Antiretroviral therapy for HIV infection in adults and adolescents. Recommendations for a public health approach: 2010 revision. Geneva: World Health Organization; 2010 (https://apps.who.int/iris/bitstream/handle/10665/44379/9789241599764_eng.pdf?sequence=1).
  121. Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray A et al. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med. 2010;362:697–706. doi: https://doi.org/10.1056/NEJMoa0905848.
  122. Havlir D, Ive P, Kendall M, Luetkemeyer A, Swindells S, Kumwenda J et al. International randomized trial of Immediate vs. early ART in HIV+ patients treated for TB: ACTG 5221 STRIDE study. Boston, United States of America 8th Conference on Retroviruses and Opportunistic Infections; 2011 (CROI conference abstracts prior to 2014 are no longer available online ).
  123. Blanc F, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E et al. Significant enhancement in survival with early (2 weeks) vs. late (8 weeks) initiation of highly active antiretroviral treatment (HAART) in severely immunosuppressed HIV-infected adults with newly diagnosed tuberculosis: “34% reduction in mortality in early arm”. Vienna, Austria: 18th International AIDS Conference; 2010 (www.natap.org/2010/IAS/IAS_91.htm).
  124. Fox GJ, Mitnick CD, Benedetti A, Chan ED, Becerra M, Chiang C-Y et al. Surgery as an adjunctive treatment for multidrug-resistant tuberculosis: an individual patient data metaanalysis. Clin Infect Dis. 2016;62:887–95. doi: https://doi.org/10.1093/cid/ciw002.
  125. Harris RC, Khan MS, Martin LJ, Allen V, Moore DAJ, Fielding K et al. The effect of surgery on the outcome of treatment for multidrug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2016;16. doi: https://doi.org/10.1186/s12879-016-1585-0.
  126. Boston University. Efficacy and safety of levofloxacin for the treatment of MDR-TB (Opti-Q) [website]. Maryland, USA: US National Library of Medicine; 2022 (https://clinicaltrials.gov/show/NCT01918397).

Book navigation