References

  1. Resolution 73/3: Political declaration of the high-level meeting of the General Assembly on the fight against tuberculosis. New York: United Nations General Assembly; 2018 (https://www.who.int/publications/m/item/political-declaration-of-the-un-general-assembly-high-level-meeting-on-the-fight-against-tuberculosis).
  2. Resolution 78/L.4. Political declaration of the high-level meeting of the General Assembly on the fight against tuberculosis. New York: United Nations; 2023 (https://digitallibrary.un.org/record/4022582).
  3. Global tuberculosis report 2023. Geneva: World Health Organization; 2023 (https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023).
  4. Implementing the End TB Strategy: the essentials. Geneva: World Health Organization; 2015 (https://apps.who.int/iris/handle/10665/206499).
  5. Report for WHO: non-inferiority evaluation of Nipro NTM+MDRTB and Hain GenoType MTBDRplus V2 line probe assays. Geneva: Foundation for Innovative New Diagnostics; 2015.
  6. Feasey NA, Banada PP, Howson W, Sloan DJ, Mdolo A, Boehme C et al. Evaluation of Xpert MTB/RIF for detection of tuberculosis from blood samples of HIV-infected adults confirms Mycobacterium tuberculosis bacteremia as an indicator of poor prognosis. J Clin Microbiol. 2013;51:2311–6. doi: https://doi.org/10.1128/JCM.00330-13.
  7. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB. Geneva: World Health Organization; 2013 (https://apps.who.int/iris/handle/10665/112472).
  8. Rapid implementation of the Xpert TB/RIF diagnostic test: technical and operational ‘How-to’; practical considerations. Geneva: World Health Organization; 2011 (https://apps.who.int/iris/bitstream/handle/10665/44593/9789241501569_eng.pdf?sequence=1).
  9. WHO meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF (WHO/HTM/TB/2017.04). Geneva: World Health Organization; 2017 (https://apps.who.int/iris/bitstream/handle/10665/254792/WHO-HTM-TB-20;jsessionid=52D5C956DADE369AE677BE443C4DF574?sequence=1).
  10. Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 2008;336:1106–10. doi: https://doi.org/10.1136/bmj.39500.677199.AE.
  11. Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Policy update. Geneva, World Health Organization: 2013 (https://www.who.int/publications/i/item/9789241506335).
  12. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Geneva: World Health Organization; 2020 (https://apps.who.int/iris/bitstream/handle/10665/330395/9789240000339-eng.pdf).
  13. Molbio: Our products [website]. Goa, India: Molbio Diagnostics; (http://www.molbiodiagnostics.com/products-listing.php).
  14. Tuberculosis: diagnostics technology landscape. Geneva: Unitaid; 2017 (https://unitaid.org/assets/2017-Unitaid-TB-Diagnostics-Technology-Landscape.pdf).
  15. Abbott RealTime RIF/INH resistance [website]. Illinois: Abbott; 2019 (https://www.molecular.abbott/int/en/products/infectious-disease/realtime-mtb-rif-inh-resistance).
  16. Abbott RealTime MTB [website]. Illinois: Abbott; 2019 (https://www.molecular.abbott/int/en/products/infectious-disease/realtime-mtb).
  17. FluoroType® MTB: the direct detection test for innovative labs [website]. Massachusetts: Bruker-Hain Diagnostics; 2019 (https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/ tuberculosis/fluorotype-mtb.html).
  18. FluoroType® MDRTB: the direct detection test for innovative labs [website]. Massachusetts: Bruker-Hain Diagnostics; 2019 (https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/tuberculosis/fluorotype-mtbdr.html2019).
  19. Boyer S, March L, Kouanfack C, Laborde-Balen G, Marino P, Aghokeng AF et al. Monitoring of HIV viral load, CD4 cell count, and clinical assessment versus clinical monitoring alone for antiretroviral therapy in low-resource settings (Stratall ANRS 12110/ESTHER): a cost-effectiveness analysis. Lancet Infect Dis. 2013;13:577–86. doi: https://doi.org/10.1016/S1473-3099(13)70073-2.
  20. GRADEpro GDT [website]. Hamilton, Ontario: McMaster University; 2020 (https://gradepro.org/).
  21. Eckman MH, Ward JW, Sherman KE. Cost effectiveness of universal screening for hepatitis C virus infection in the era of direct-acting, pangenotypic treatment regimens. Clin Gastroenterol Hepatol. 2019;17:930–9. e9. doi: https://doi.org/10.1016/j.cgh.2018.08.080.
  22. Wang J-H, Chen C-H, Chang C-M, Feng W-C, Lee C-Y, Lu S-N. Hepatitis C virus core antigen is cost-effective in community-based screening of active hepatitis C infection in Taiwan. J Formos Med Assoc. 2020;119:504–8. doi: https://doi.org/10.1016/j.jfma.2019.07.011.
  23. Equator network. Enhancing the QUAlity and Transparency Of health Research (Home page) [website]. 2023 (https://www.equator-network.org/reporting-guidelines/stard/).
  24. Alere Determine TB LAM Ag: Rapid rule-in TB-HIV co-infection [website]. Abbott; 2019 (https://www.alere.com/en/home/product-details/determine-tb-lam.html).
  25. Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003;83:91–7. doi: https://doi.org/10.1016/S1472-9792(02)00089-6.
  26. Shah M, Hanrahan C, Wang ZY, Dendukuri N, Lawn SD, Denkinger CM, Steingart KR. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV-positive adults. Cochrane Database of Syst Rev. 2016. doi: https://doi.org/10.1002/14651858.CD011420.pub2.
  27. The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV: policy guidance. Geneva: World Health Organization; 2015 (https://www.who.int/publications/i/item/9789241509633).
  28. Peter J, Theron G, Chanda D, Clowes P, Rachow A, Lesosky M et al. Test characteristics and potential impact of the urine LAM lateral flow assay in HIV-infected outpatients under investigation for TB and able to self-expectorate sputum for diagnostic testing. BMC Infect Dis. 2015;15. doi: https://doi.org/10.1186/s12879-015-0967-z.
  29. Peter JG, Theron G, van Zyl-Smit R, Haripersad A, Mottay L, Kraus S et al. Diagnostic accuracy of a urine lipoarabinomannan strip-test for TB detection in HIV-infected hospitalised patients. Eur Respir J. 2012;40:1211–20. doi: https://doi.org/10.1183/09031936.00201711.
  30. Peter JG, Zijenah LS, Chanda D, Clowes P, Lesosky M, Gina P et al. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet. 2016;387:1187–97. doi: https://doi.org/10.1016/s0140-6736(15)01092-2.
  31. Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. Policy update. Geneva: World Health Organization; 2019 (https://www.who.int/publications/i/item/9789241550604).
  32. WHO consolidated guidelines on tuberculosis. Module 4: Treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240007048).
  33. Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J et al. The new Xpert MTB/RIF Ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. mBio. 2017;8. doi: https://doi.org/10.1128/mBio.00812-17.
  34. Xpert MTB/XDR clinical evaluation trial (ClinicalTrials.gov Identifier: NCT03728725). 2021 (https://clinicaltrials.gov/ct2/show/NCT03728725).
  35. Camus J-C, Pryor MJ, Médigue C, Cole ST. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology. 2002;148:2967–73. doi: https://doi.org/10.1099/00221287-148-10-2967.
  36. Schünemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH et al. GRADE guidelines: 21 part 2. Test accuracy: inconsistency, imprecision, publication bias, and other domains for rating the certainty of evidence and presenting it in evidence profiles and summary of findings tables. J Clin Epidemiol. 2020;122:142–52. doi: https://doi.org/10.1016/j.jclinepi.2019.12.021.
  37. Schünemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH et al. GRADE guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. J Clin Epidemiol. 2020;122:129–41. doi: https://doi.org/10.1016/j.jclinepi.2019.12.020.
  38. Line probe assays for drug-resistant tuberculosis detection: interpretation and reporting guide for laboratory staff and clinicians. Geneva: Global Laboratory Initiative; 2018 (http://www.stoptb.org/wg/gli/assets/documents/LPA_test_web_ready.pdf).
  39. Nathavitharana RR, Cudahy PG, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2017;49:1601075. doi: https://doi.org/10.1183/13993003.01075-2016.
  40. Rapid diagnosis of tuberculosis brochure. Nehren, Germany: Hain Lifescience; 2015 (http://www.hain-lifescience.de/uploadfiles/file/produkte/mikrobiologie/mykobakterien/tb_eng.pdf).
  41. Gikalo MB, Nosova EY, Krylova LY, Moroz AM. The role of eis mutations in the development of kanamycin resistance in Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 2012;67:2107–9. doi: https://doi.org/10.1093/jac/dks178.
  42. Bossuyt P, Reitsma J, Bruns D, Gatsonis C, Glasziou P, Irwig L et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527. doi: https://doi.org/10.1136/bmj.h5527.
  43. Sekiguchi J, Nakamura T, Miyoshi-Akiyama T, Kirikae F, Kobayashi I, Augustynowicz-Kopec E et al. Development and evaluation of a line probe assay for rapid identification of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis strains. J Clin Microbiol. 2007;45:2802–7. doi: https://doi.org/10.1128/jcm.00352-07.
  44. Köser CU, Cirillo DM, Miotto P. How to optimally combine genotypic and phenotypic drug susceptibility testing methods for pyrazinamide. Antimicrob Agents Chemother. 2020;64:e01003– 20. doi: https://doi.org/10.1128/AAC.01003-20.
  45. Groessl EJ, Ganiats TG, Hillery N, Trollip A, Jackson RL, Catanzaro DG et al. Cost analysis of rapid diagnostics for drug-resistant tuberculosis. BMC Infect Dis. 2018;18:102. doi: https://doi.org/10.1186/s12879-018-3013-0.
  46. Li X, Deng Y, Wang J, Jing H, Shu W, Qin J et al. Rapid diagnosis of multidrug-resistant tuberculosis impacts expenditures prior to appropriate treatment: a performance and diagnostic cost analysis. Infect Drug Resist. 2019;12:3549–55. doi: https://doi.org/10.2147/idr.S224518.
  47. Pooran A, Pieterson E, Davids M, Theron G, Dheda K. What is the cost of diagnosis and management of drug resistant tuberculosis in South Africa? PLoS One. 2013;8:e54587. doi: https://doi.org/10.1371/journal.pone.0054587.
  48. Shah M, Chihota V, Coetzee G, Churchyard G, Dorman SE. Comparison of laboratory costs of rapid molecular tests and conventional diagnostics for detection of tuberculosis and drug-resistant tuberculosis in South Africa. BMC Infect Dis. 2013;13:352. doi: https://doi.org/10.1186/1471-2334-13-352.
  49. Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16:1185–92. doi: https://doi.org/10.1016/s1473-3099(16)30190-6.
  50. Jouet A, Gaudin C, Badalato N, Allix-Beguec C, Duthoy S, Ferre A et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J. 2021;57. doi: https://doi.org/10.1183/13993003.02338-2020.
  51. Instruction manual: Mycobacterium nucleic acid and M. tuberculosis drug resistance gene detection kits. Peoples Republic of China: Hangzhou ShengTing Medical Technology Co; 2023.
  52. Engel N, Ochodo EA, Karanja PW, Schmidt BM, Janssen R, Steingart KR, Oliver S. Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views. Cochrane Database Syst Rev. 2022;4:CD014877. doi: https://doi.org/10.1002/14651858.CD014877.pub2.
  53. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance: supplementary document. Geneva: World Health Organization; 2021 (https://iris.who.int/handle/10665/341906).

Book navigation