References

1. Global tuberculosis report 2020. WHO/HTM/TB/2020.22, Geneva: World Health Organization; 2020 (https://www.who.int/publications/i7item/9789240013131).

2. Implementing the End TB strategy: the essentials. Geneva: World Health Organization; 2015 (https://www.who.int/tb/publications/2015/end_tb_essential.pdf, accessed 26 May 2020).

3. American Red Cross. What is the nucleic acid test (NAT)? [website]. ShareCare; (https://www.sharecare.com/health/blood-basics/what-is-the-nucleic-acid-test-n-a-t).

4. Line probe assays for drug-resistant tuberculosis detection: interpretation and reporting guide for laboratory staff and clinicians. Geneva: Global Laboratory Initiative; 2018 (http://www.stoptb.org/wg/gli/assets/documents/LPA_test_web_ready.pdf, accessed 26 May 2020).

5. Report for WHO: non-inferiority evaluation of Nipro NTM+MDRTB and Hain GenoType MTBDRplus V2 line probe assays. Geneva: Foundation for Innovative New Diagnostics; 2015 (http://www.finddx.org/wp-content/uploads/2016/04/LPA-report_noninferiority-study_oct2015.pdf, accessed 26 May 2020).

6. Feasey NA, Banada PP, Howson W, Sloan DJ, Mdolo A, Boehme C et al. Evaluation of Xpert MTB/RIF for detection of tuberculosis from blood samples of HIV-infected adults confirms Mycobacterium tuberculosis bacteremia as an indicator of poor prognosis. J Clin Microbiol. 2013;51(7):2311-6 (https://pubmed.ncbi.nlm.nih.gov/23678061/, accessed 26 May 2020).

7. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB. Geneva: World Health Organization; 2013 (https://apps.who.int/iris/handle/10665/112472, accessed 1 June 2020).

8. Rapid implementation of the Xpert MTB/RIF diagnostic test: technical and operational 'How-to'; practical considerations. Geneva: World Health Organization; 2011 (https://apps.who.int/iris/bitstream/handle/10665/44593/9789241501569_eng.pdf?sequence=1, accessed 1 June 2020).

9. WHO meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF (WHO/HTM/TB/2017.04). Geneva: World Health Organization; 2017 (https://apps.who.int/iris/bitstream/handle/10665/254792/WHO-HTM-TB-20;jsessionid=52D5C956DADE369AE677BE443C4DF574?sequence=1, accessed 15 December 2019).

10. Schünemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE et al. Grading quality of evidence and strength of recommendations for diagnostic tests and strategies. Bmj. 2008;336(7653):1106– 10 (https://pubmed.ncbi.nlm.nih.gov/18483053/, accessed 1 June 2020).

11. Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Policy update. Geneva, World Health Organization: 2013 (https://www.who.int/tb/publications/xpert-mtb-rif-assay-diagnosis-policy-update/en/, accessed 5 June 2020).

12. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Geneva: World Health Organization; 2020 (https://apps.who.int/iris/bitstream/handle/10665/330395/9789240000339- eng.pdf, accessed 5 June 2020).

13. Molbio: Our products [website]. (http://www.molbiodiagnostics.com/products-listing.php, accessed 11 June 2020).

14. Tuberculosis: diagnostics technology landscape. Geneva: Unitaid; 2017 (https://unitaid.org/ assets/2017-Unitaid-TB-Diagnostics-Technology-Landscape.pdf).

15. Abbott RealTime MTB [website]. Illinois: Abbott; 2019 (https://www.molecular.abbott/int/en/ products/infectious-disease/realtime-mtb).

16. Abbott RealTime RIF/INH resistance [website]. Illinois: Abbott; 2019 (https://www.molecular.abbott/ int/en/products/infectious-disease/realtime-mtb-rif-inh-resistance).

17. FluoroType® MDRTB: the direct detection test for innovative labs [website]. Massachusetts: BrukerHain Diagnostics; 2019 (https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/ tuberculosis/fluorotype-mtbdr.html 2019).

18. FluoroType® MTB: the direct detection test for innovative labs [website]. Massachusetts: BrukerHain Diagnostics; 2019 (https://www.hain-lifescience.de/en/products/microbiology/mycobacteria/ tuberculosis/fluorotype-mtb.html).

19. McMaster University. GRADEpro GDT [website]. 2020 (https://gradepro.org/).

20. Boyer S, March L, Kouanfack C, Laborde-Balen G, Marino P, Aghokeng AF et al. Monitoring of HIV viral load, CD4 cell count, and clinical assessment versus clinical monitoring alone for antiretroviral therapy in low-resource settings (Stratall ANRS 12110/ESTHER): a cost-effectiveness analysis. Lancet Infect Dis. 2013;13(7):577–86.

21. Eckman MH, Ward JW, Sherman KE. Cost effectiveness of universal screening for hepatitis C virus infection in the era of direct-acting, pangenotypic treatment regimens. Clin Gastroenterol Hepatol. 2019;17(5):930–9. e9.

22. Wang J-H, Chen C-H, Chang C-M, Feng W-C, Lee C-Y, Lu S-N. Hepatitis C virus core antigen is costeffective in community-based screening of active hepatitis C infection in Taiwan. J Formos Med Assoc. 2020;119(1):504–8.

23. Equator etwork. Enhancing the QUAlity and Transparency Of health Research. http://www.equatornetwork.org/reporting-guidelines/stard/.

24. Alere Determine™ TB LAM Ag: Rapid rule-in TB-HIV co-infection [website]. Abbott; 2019 (https:// www.alere.com/en/home/product-details/determine-tb-lam.html, accessed 26 May 2020).

25. Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis. 2003;83(1–3):91–7 (https://pubmed.ncbi.nlm.nih.gov/12758196/, accessed 26 May 2020).

26. Shah M, Hanrahan C, Wang ZY, Dendukuri N, Lawn SD, Denkinger CM et al. Lateral flow urine lipoarabinomannan assay for detecting active tuberculosis in HIV‐positive adults. Cochrane Database of Syst Rev. 2016;(5)(https://pubmed.ncbi.nlm.nih.gov/27163343/, accessed 26 May 2020).

27. The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV: policy guidance. Geneva: World Health Organization; 2015 (https://www.who.int/tb/publications/use-of-lf-lam-tb-hiv/en/, accessed 26 May 2020).

28. Peter J, Theron G, Chanda D, Clowes P, Rachow A, Lesosky M et al. Test characteristics and potential impact of the urine LAM lateral flow assay in HIV- infected outpatients under investigation for TB and able to self-expectorate sputum for diagnostic testing. BMC Infect Dis. 2015;15(1) (https:// bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-015-0967-z, accessed 26 May 2020).

29. Peter JG, Theron G, van Zyl-Smit R, Haripersad A, Mottay L, Kraus S et al. Diagnostic accuracy of a urine lipoarabinomannan strip-test for TB detection in HIV-infected hospitalised patients. Eur Respir J. 2012;40(5):1211–20 (https://erj.ersjournals.com/content/40/5/1211, accessed 26 May 2020).

30. Peter JG, Zijenah LS, Chanda D, Clowes P, Lesosky M, Gina P et al. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet. 2016;387(10024):1187–97 (http://dx.doi.org/10.1016/s0140-6736(15)01092-2, accessed 26 May 2020).

31. The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV. Policy guidance. Geneva: World Health Organization; 2015 (https://www.who.int/tb/publications/use-of-lf-lam-tb-hiv/en/, accessed 5 June 2020)

32. Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. Policy update. Geneva: World Health Organization; 2019 (https://www.who. int/tb/publications/2019/diagnose_tb_hiv/en/, accessed 5 June 2020).

33. WHO consolidated guidelines on tuberculosis, module 4: treatment – drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/ item/9789240007048).

34. Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J et al. The new Xpert MTB/RIF Ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. mBio. 2017;8(4) (https://pubmed.ncbi.nlm.nih.gov/28851844/).

35. Xpert MTB/XDR clinical evaluation trial (ClinicalTrials.gov Identifier: NCT03728725). 2021 (https:// clinicaltrials.gov/ct2/show/NCT03728725).

36. Camus J-C, Pryor MJ, Médigue C, Cole ST. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology. 2002;148(10):2967–73.

37. Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008;32(5):1165–74 (https://erj.ersjournals.com/ content/32/5/1165, accessed 1 June 2020).

38. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB): policy statement. Geneva: World Health Organization; 2011 (https://www.who.int/tb/ laboratory/line_probe_assays/en/, accessed 1 June 2020).

39. Nathavitharana RR, Cudahy PG, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2017;49(1):1601075.

40. Rapid diagnosis of tuberculosis brochure. Nehren, Germany: Hain Lifescience; 2015 (http://www. hain-lifescience.de/uploadfiles/file/produkte/mikrobiologie/mykobakterien/tb_eng.pdf, accessed 1 June 2020).

41. Gikalo MB, Nosova EY, Krylova LY, Moroz AM. The role of eis mutations in the development of kanamycin resistance in Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 2012;67(9):2107–9.

42. Bossuyt P, Reitsma J, Bruns D, Gatsonis C, Glasziou P, Irwig L et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 351: h5527. 2015.

43. Sekiguchi J, Nakamura T, Miyoshi-Akiyama T, Kirikae F, Kobayashi I, Augustynowicz-Kopec E et al. Development and evaluation of a line probe assay for rapid identification of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis strains. J Clin Microbiol. 2007;45(9):2802–7 (https://pubmed.ncbi.nlm.nih.gov/17596354/).

44. Köser CU, Cirillo DM, Miotto P. How to optimally combine genotypic and phenotypic drug susceptibility testing methods for pyrazinamide. Antimicrob Agents Chemother. 2020;64(9):e01003–20 (https:// pubmed.ncbi.nlm.nih.gov/32571824).

45. Shah M, Chihota V, Coetzee G, Churchyard G, Dorman SE. Comparison of laboratory costs of rapid molecular tests and conventional diagnostics for detection of tuberculosis and drugresistant tuberculosis in South Africa. BMC Infect Dis. 2013;13:352 (https://pubmed.ncbi.nlm.nih. gov/23895665/).

46. Groessl EJ, Ganiats TG, Hillery N, Trollip A, Jackson RL, Catanzaro DG et al. Cost analysis of rapid diagnostics for drug-resistant tuberculosis. BMC Infect Dis. 2018;18(1):102 (https://pubmed.ncbi. nlm.nih.gov/29499645/).

47. Li X, Deng Y, Wang J, Jing H, Shu W, Qin J et al. Rapid diagnosis of multidrug-resistant tuberculosis impacts expenditures prior to appropriate treatment: a performance and diagnostic cost analysis. Infect Drug Resist. 2019;12:3549–55 (https://pubmed.ncbi.nlm.nih.gov/31814743/).

48. Pooran A, Pieterson E, Davids M, Theron G, Dheda K. What is the cost of diagnosis and management of drug resistant tuberculosis in South Africa? PLoS One. 2013;8(1):e54587 (https://pubmed.ncbi. nlm.nih.gov/23349933/).

49. Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16(10):1185–92 (https://pubmed.ncbi. nlm.nih.gov/27397590/).

Book navigation