Manuel opérationnel de l’OMS sur la tuberculose. Module 4 : Traitement - Traitement de la tuberculose pharmacorésistante. Genève, Organisation mondiale de la Santé ; 2020 (https://www.who.int/fr/publications/i/item/9789240006997).
Guidelines for the programmatic management of drug-resistant tuberculosis (WHO/HTM/TB/2006.361). Geneva: World Health Organization; 2006 (https://apps.who.int/iris/handle/10665/246249).
Guidelines for the programmatic management of drug-resistant tuberculosis (WHO/HTM/TB/2006.361). Geneva: World Health Organization; 2008 (https://apps.who.int/iris/handle/10665/43965).
Guidelines for the programmatic management of drug-resistant tuberculosis, 2011 update (WHO/HTM/TB/2011.6). Geneva, Switzerland: World Health Organization; 2011 (https://www.who.int/publications/i/item/9789241501583).
The use of bedaquiline in the treatment of multidrug-resistant tuberculosis. Interim policy guidance (WHO/HTM/TB/2013.6). Geneva: World Health Organization; 2013 (https://apps.who.int/iris/handle/10665/84879).
The use of delamanid in the treatment of multidrug-resistant tuberculosis. Interim policy guidance (WHO/HTM/TB2014.23). Geneva: World Health Organization; 2014 (https://apps.who.int/iris/handle/10665/137334).
Van Deun A, Maug AKJ, Salim MAH, Das PK, Sarker MR, Daru P et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2010;182:684–92. doi: https://doi.org/10.1164/rccm.201001-0077OC.
Kuaban C, Noeske J, Rieder HL, Aït-Khaled N, Abena Foe JL, Trébucq A. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis. 2015;19:517–24. doi: https://doi.org/10.5588/ijtld.14.0535.
Trébucq A, Schwoebel V, Kashongwe Z, Bakayoko A, Kuaban C, Noeske J et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int J Tuberc Lung Dis. 2018;22:17–25. doi: https://doi.org/10.5588/ijtld.17.0498.
Piubello A, Harouna SH, Souleymane MB, Boukary I, Morou S, Daouda M et al. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int J Tuberc Lung Dis. 2014;18:1188–94. doi: https://doi.org/10.5588/ijtld.13.0075.
Nunn AJ, Phillips PP, Meredith SK, Chiang C-Y, Conradie F, Dalai D et al. A trial of a shorter regimen for rifampin-resistant tuberculosis. N Engl J Med. 2019;380:1201–13. doi: https://doi.org/10.1056/NEJMoa1811867.
Position statement on the continued use of the shorter MDR-TB regimen following an expedited review of the STREAM Stage 1 preliminary results (WHO/CDS/TB/2018.2). Geneva World Health Organization; 2018 (https://www.who.int/publications/m/item/WHO-CDS-TB-2018.2).
Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med. 2020;382:893–902. doi: https://doi.org/10.1056/NEJMoa1901814.
Esmail A, Oelofse S, Lombard C, Perumal R, Mbuthini L, Goolam Mahomed A et al. An all-oral 6-month regimen for multidrug-resistant tuberculosis: a multicenter, randomized controlled clinical trial (the NExT Study). Am J Respir Crit Care Med. 2022;205:1214–27. doi: https://doi.org/10.1164/rccm.202107-1779OC.
Conradie F, Bagdasaryan TR, Borisov S, Howell P, Mikiashvili L, Ngubane N et al. Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N Engl J Med. 2022;387:810–23. doi: https://doi.org/10.1056/NEJMoa2119430.
Salinger DH, Nedelman JR, Mendel C, Spigelman M, Hermann DJ. Daily dosing for Bedaquiline in patients with tuberculosis. Antimicrob Agents Chemother. 2019;63. doi: https://journals.asm.org/doi/10.1128/AAC.00463-19.
Protocol title: a Phase 3 partially-blinded, randomized trial assessing the safety and efficacy of various doses and treatment durations of linezolid plus bedaquiline and pretomanid in participants with pulmonary infection of either extensively drug-resistant tuberculosis (XDR-TB), pre-XDR-TB or treatment intolerant or non-responsive multi-drug resistant tuberculosis (MDR-TB). 2020.
Nunn AJ, Phillips PP, Mitchison DA. Timing of relapse in short-course chemotherapy trials for tuberculosis. Int J Tuberc Lung Dis. 2010;14:241–2. doi: http://www.ncbi.nlm.nih.gov/pubmed/20074418.
Gomez GB, Siapka M, Conradie F, Ndjeka N, Garfin AMC, Lomtadze N et al. Cost-effectiveness of bedaquiline, pretomanid and linezolid for treatment of extensively drug-resistant tuberculosis in South Africa, Georgia and the Philippines. BMJ Open. 2021;11. doi: https://doi.org/10.1136/bmjopen-2021-051521.
Mulder C, Rupert S, Setiawan E, Mambetova E, Edo P, Sugiharto J et al. Budgetary impact of using BPaL for treating extensively drug-resistant tuberculosis. BMJ Global Health. 2022;7. doi: https://doi.org/10.1136/bmjgh-2021-007182.
van de Berg SEJ, Pelzer PT, van der Land AJ, Abdrakhmanova E, Ozi AM, Arias M et al. Acceptability, feasibility, and likelihood of stakeholders implementing the novel BPaL regimen to treat extensively drug-resistant tuberculosis patients. BMC Public Health. 2021;21. doi: https://doi.org/10.1186/s12889-021-11427-y.
Stringer B, Lowton K, James N, Nyang’wa BT. Capturing patient-reported and quality of life outcomes with use of shorter regimens for drug-resistant tuberculosis: mixed-methods substudy protocol, TB PRACTECAL-PRO. BMJ Open. 2021;11. doi: https://doi.org/10.1136/bmjopen-2020-043954.
Lignes directrices unifiées de l’OMS sur la tuberculose. Module 5 : prise en charge de la tuberculose chez les enfants et les adolescents. Genève : Organisation mondiale de la Santé, 2022.
Technique automatisée d’amplification de l’acide nucléique en temps réel pour la détection rapide et simultanée de la tuberculose et de la résistance à la rifampicine : utilisation du test Xpert MTB/RIF pour le diagnostic de la tuberculose extrapulmonaire chez l’adulte et chez l’enfant. Genève : Organisation mondiale de la Santé, 2014 (https://apps.who.int/iris/bitstream/handle/10665/145681/9789242506334_ fre.pdf?sequence=1&isAllowed=y).
Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB. Geneva: World Health Organization; 2018 (https://www.who.int/publications/i/item/WHO-CDS-TB-2018.5).
Lignes directrices unifiées de l’OMS sur la tuberculose Module 4 : Traitement - Traitement de la tuberculose pharmacorésistante. Genève : Organisation mondiale de la Santé ; 2020 (https://www.who.int/fr/publications/i/item/9789240007048).
Ndjeka N, Campbell JR, Meintjes G, Maartens G, Schaaf HS, Hughes J et al. Treatment outcomes 24 months after initiating short, all-oral bedaquiline-containing or injectable-containing rifampicin-resistant tuberculosis treatment regimens in South Africa: a retrospective cohort study. Lancet Infect Dis. 2022;22:1042–51. doi: https://doi.org/10.1016/S1473-3099(21)00811-2.
Brill MJE, Svensson EM, Pandie M, Maartens G, Karlsson MO. Confirming model-predicted pharmacokinetic interactions between bedaquiline and lopinavir/ritonavir or nevirapine in patients with HIV and drug-resistant tuberculosis. Int J Antimicrob Agents. 2017;49:212–7. doi: https://doi.org/10.1016/j.ijantimicag.2016.10.020.
Svensson EM, Dooley KE, Karlsson MO. Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential implications for patients with tuberculosis-HIV coinfection. Antimicrob Agents Chemother. 2014;58:6406–12. doi: https://doi.org/10.1128/AAC.03246-14.
Svensson EM, Aweeka F, Park J-G, Marzan F, Dooley KE, Karlsson MO. Model-based estimates of the effects of efavirenz on bedaquiline pharmacokinetics and suggested dose adjustments for patients coinfected with HIV and tuberculosis. Antimicrob Agents Chemother. 2013;57:2780–7. doi: https://doi.org/10.1128/AAC.00191-13.
Cerrone M, Bracchi M, Wasserman S, Pozniak A, Meintjes G, Cohen K et al. Safety implications of combined antiretroviral and anti-tuberculosis drugs. Expert Opin Drug Saf. 2020;19:23–41. doi: https://doi.org/10.1080/14740338.2020.1694901.
Acquah R, Mohr-Holland E, Daniels J, Furin J, Loveday M, Mudaly V et al. Outcomes of children born to pregnant women with drug-resistant tuberculosis treated with novel drugs in Khayelitsha, South Africa: a report of five patients. Pediatr Infect Dis J. 2021;40:e191–e2. doi: https://doi.org/10.1097/inf.0000000000003069.
Loveday M, Hughes J, Sunkari B, Master I, Hlangu S, Reddy T et al. Maternal and infant outcomes among pregnant women treated for multidrug/rifampicin-resistant tuberculosis in South Africa. Clin Infect Dis. 2020;Published online 6 March 2020. doi: https://doi.org/10.1093/cid/ciaa189.
Borisov S, Danila E, Maryandyshev A, Dalcolmo M, Miliauskas S, Kuksa L et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: first global report. Eur Respir J. 2019;54:1901522. doi: https://doi.org/10.1183/13993003.01522-2019.
Ahuja SD, Ashkin D, Avendano M, Banerjee R, Bauer M, Bayona JN et al. Multidrug resistant pulmonary tuberculosis treatment regimens and patient outcomes: an individual patient data meta-analysis of 9,153 patients. PLoS Med. 2012;9:e1001300. doi: https://doi.org/10.1371/journal.pmed.1001300.
Harausz EP, Garcia-Prats AJ, Law S, Schaaf HS, Kredo T, Seddon JA et al. Treatment and outcomes in children with multidrug-resistant tuberculosis: a systematic review and individual patient data meta-analysis. PLoS Med. 2018;15:e1002591. doi: https://doi.org/10.1371/journal.pmed.1002591.
Ahmad N, Ahuja SD, Akkerman OW, Alffenaar J-WC, Anderson LF, Baghaei P et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018;392:821–34. doi: https://doi.org/10.1016/S0140-6736(18)31644-1.
Seddon JA, Hesseling AC, Godfrey-Faussett P, Schaaf HS. High treatment success in children treated for multidrug-resistant tuberculosis: an observational cohort study. Thorax. 2014;69:458–64. doi: https://doi.org/10.1136/thoraxjnl-2013-203900.
Safety and efficacy trial of delamanid for 6 months in patients with multidrug resistant tuberculosis. Otsuka Pharmaceutical Development & Commercialization, Inc.; 2016 (https://clinicaltrials.gov/ct2/show/NCT01424670).
von Groote-Bidlingmaier F, Patientia R, Sanchez E, Balanag V, Ticona E, Segura P et al. Efficacy and safety of delamanid in combination with an optimised background regimen for treatment of multidrug-resistant tuberculosis: a multicentre, randomised, double-blind, placebo-controlled, parallel group Phase 3 trial. Lancet Respir Med. 2019;7:249–59. doi: https://doi.org/10.1016/S2213-2600(18)30426-0.
Khan U, Huerga H, Khan AJ, Mitnick CD, Hewison C, Varaine F et al. The endTB observational study protocol: treatment of MDR-TB with bedaquiline or delamanid containing regimens. BMC Infect Dis. 2019;19. doi: https://doi.org/10.1186/s12879-019-4378-4.
Svensson EM, du Bois J, Kitshoff R, de Jager VR, Wiesner L, Norman J et al. Relative bioavailability of bedaquiline tablets suspended in water: implications for dosing in children. Br J Clin Pharmacol. 2018;84:2384–92.
Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020;8:383–94. doi: https://doi.org/10.1016/S2213-2600(20)30047-3.
Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J. 2015;45:161–70. doi: https://doi.org/10.1183/09031936.00035114.
Dooley KE, Miyahara S, von Groote-Bidlingmaier F, Sun X, Hafner R, Rosenkranz SL et al. Early bactericidal activity of different isoniazid doses for drug resistant TB (INHindsight): a randomized open-label clinical trial. Am J Respir Crit Care Med. 2020;201:1416–24. doi: https://doi.org/10.1164/rccm.201910-1960OC.
Thwaites GE, Bhavnani SM, Chau TTH, Hammel JP, Torok ME, Van Wart SA et al. Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. Antimicrob Agents Chemother. 2011;55:3244–53. doi: https://doi.org/10.1128/AAC.00064-11.
Sun F, Ruan Q, Wang J, Chen S, Jin J, Shao L et al. Linezolid manifests a rapid and dramatic therapeutic effect for patients with life-threatening tuberculous meningitis. Antimicrob Agents Chemother. 2014;58:6297–301. doi: https://doi.org/10.1128/AAC.02784-14.
Akkerman OW, Odish OF, Bolhuis MS, de Lange WC, Kremer HP, Luijckx G-JR et al. Pharmacokinetics of bedaquiline in cerebrospinal fluid and serum in multidrug-resistant tuberculous meningitis. Clin Infect Dis. 2016;62:523–4. doi: https://doi.org/10.1093/cid/civ921.
Tucker EW, Pieterse L, Zimmerman MD, Udwadia ZF, Peloquin CA, Gler MT et al. Delamanid central nervous system pharmacokinetics in tuberculous meningitis in rabbits and humans. Antimicrob Agents Chemother. 2019;63:e00913–19. doi: https://doi.org/10.1128/AAC.00913-19.
Linh NN, Viney K, Gegia M, Falzon D, Glaziou P, Floyd K et al. World Health Organization treatment outcome definitions for tuberculosis: 2021 update. Eur Respir J. 2021;58. doi: https://doi.org/10.1183/13993003.00804-2021.
Mao Y, Dai D, Jin H, Wang Y. The risk factors of linezolid-induced lactic acidosis: a case report and review. Med. 2018;97:e12114. doi: https://doi.org/10.1097/MD.0000000000012114.
Hornik CP, Herring AH, Benjamin DK, Capparelli EV, Kearns GL, van den Anker J et al. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr Infect Dis J. 2013;32:748–53. doi: https://doi.org/10.1097/INF.0b013e31828be70b.
Electronic recording and reporting for tuberculosis care and control (WHO/HTM/TB/2011.22). Geneva: World Health Organization; 2012 (https://apps.who.int/iris/handle/10665/44840).
Escalante P, Graviss EA, Griffith DE, Musser JM, Awe RJ. Treatment of isoniazid-resistant tuberculosis in southeastern Texas. Chest. 2001;119:1730–6. doi: https://doi.org/10.1378/chest.119.6.1730.
Nolan C, Goldberg S. Treatment of isoniazid-resistant tuberculosis with isoniazid, rifampin, ethambutol, and pyrazinamide for 6 months. Int J Tuberc Lung Dis. 2002;6:952–8. doi: https://pubmed.ncbi.nlm.nih.gov/12475140/.
Kim YH, Suh GY, Chung MP, Kim H, Kwon OJ, Lim SY et al. Treatment of isoniazid-resistant pulmonary tuberculosis. BMC Infect Dis. 2008;8. doi: https://doi.org/10.1186/1471-2334-8-6.
Fregonese F, Ahuja SD, Akkerman OW, Arakaki-Sanchez D, Ayakaka I, Baghaei P et al. Comparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2018;6:265–75. doi: https://doi.org/10.1016/S2213-2600(18)30078-X.
Andrade RJ, Tulkens PM. Hepatic safety of antibiotics used in primary care. J Antimicrob Chemother. 2011;66:1431–46. doi: https://doi.org/10.1093/jac/dkr159.
Centers for Disease Control and Prevention. Update. Fatal and severe liver injuries associated with rifampin and pyrazinamide for latent tuberculosis infection, and revisions in American Thoracic Society/CDC recommendations-United States, 2001. MMWR Morb Mortal Wkly. 2001;50:733–5. doi: https://pubmed.ncbi.nlm.nih.gov/11787580/.
Voogt GR, Schoeman HS. Ototoxicity of aminoglycoside drugs in tuberculosis treatment. S Afr J Commun Disord. 1996;43:3–6. doi: https://pubmed.ncbi.nlm.nih.gov/9265840/.
Gülbay BE, Gürkan ÖU, Yıldız ÖA, Önen ZP, Erkekol FÖ, Baççıoğlu A et al. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis. Respir Med. 2006;100:1834–42. doi: https://doi.org/10.1016/j.rmed.2006.01.014.
Bloss E, Kukša L, Holtz TH, Riekstina V, Skripčonoka V, Kammerer S et al. Adverse events related to multidrug-resistant tuberculosis treatment, Latvia, 2000–2004. Int J Tuberc Lung Dis. 2010;14:275–81. doi: https://pubmed.ncbi.nlm.nih.gov/20132617/.
Oxlade O, Falzon D, Menzies D. The impact and cost-effectiveness of strategies to detect drug-resistant tuberculosis. Eur Respir J. 2012;39:626–34. doi: https://doi.org/10.1183/09031936.00065311.
Technique automatisée d’amplification de l’acide nucléique en temps réel pour la détection rapide et simultanée de la tuberculose et de la résistance à la rifampicine : utilisation du test Xpert MTB/RIF pour le diagnostic de la tuberculose pulmonaire et de la tuberculose extrapulmonaire chez l’adulte et chez l’enfant (WHO/HTM/TB/2013.16) Genève : Organisation mondiale de la Santé ; 2014 (https://apps.who.int/iris/bitstream/handle/10665/145681/9789242506334_fre.pdf?sequence=1&isAllowed=y).
Bollela VR, Namburete NI, Feliciano CS, Macheque D, Harrison LH, Caminero J. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int J Tuberc Lung Dis. 2016;20:1099–104. doi: https://doi.org/10.5588/ijtld.15.0864.
Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind S, LN F et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med. 2003;167:603–62. doi: https://doi.org/10.1164/rccm.167.4.603.
Ahmad Khan F, Minion J, Al-Motairi A, Benedetti A, Harries AD, Menzies D. An updated systematic review and meta-analysis on the treatment of active tuberculosis in patients with HIV infection. Clin Infect Dis. 2012;55:1154–63. doi: https://doi.org/10.1093/cid/cis630.
Lan Z, Ahmad N, Baghaei P, Barkane L, Benedetti A, Brode SK et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med. 2020.
Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM et al. Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis. 2016;16:1185–92. doi: https://doi.org/10.1016/S1473-3099(16)30190-6.
Ramachandran G, Kumar AKH, Srinivasan R, Geetharani A, Sugirda P, Nandhakumar B et al. Effect of rifampicin & isoniazid on the steady state pharmacokinetics of moxifloxacin. Indian J Med Res. 2012;136:979. doi: https://pubmed.ncbi.nlm.nih.gov/23391793/.
Lempens P, Meehan CJ, Vandelannoote K, Fissette K, de Rijk P, Van Deun A et al. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci Rep. 2018;8. doi: https://doi.org/10.1038/s41598-018-21378-x.
Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63:e147–e95. doi: https://doi.org/10.1093/cid/ciw376.
Kurbatova EV, Gammino VM, Bayona J, Becerra M, Danilovitz M, Falzon D et al. Frequency and type of microbiological monitoring of multidrug-resistant tuberculosis treatment. Int J Tuberc Lung Dis. 2011;15:1553–5. doi: https://doi.org/10.5588/ijtld.11.0101.
Mitnick CD, White RA, Lu C, Rodriguez CA, Bayona J, Becerra MC et al. Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method. Eur Respir J. 2016;48:1160–70. doi: https://doi.org/10.1183/13993003.00462-2016.
Friedrich SO, Rachow A, Saathoff E, Singh K, Mangu CD, Dawson R et al. Assessment of the sensitivity and specificity of Xpert MTB/RIF assay as an early sputum biomarker of response to tuberculosis treatment. Lancet Respir Med. 2013;1:462–70. doi: https://doi.org/10.1016/S2213-2600(13)70119-X.
Jayakumar A, Savic RM, Everett CK, Benator D, Alland D, Heilig CM et al. Xpert MTB/RIF assay shows faster clearance of Mycobacterium tuberculosis DNA with higher levels of rifapentine exposure. J Clin Microbiol. 2016;54:3028–33. doi: https://doi.org/10.1128/JCM.01313-16.
Burgos M, Gonzalez LC, Paz EA, Gournis E, Kawamura LM, Schecter G et al. Treatment of multidrug-resistant tuberculosis in San Francisco: an outpatient-based approach. Clin Infect Dis. 2005;40:968–75. doi: https://doi.org/10.1086/428582.
Dheda K, Shean K, Zumla A, Badri M, Streicher EM, Page-Shipp L et al. Early treatment outcomes and HIV status of patients with extensively drug-resistant tuberculosis in South Africa: a retrospective cohort study. Lancet. 2010;375:1798–807. doi: https://doi.org/10.1016/S0140-6736(10)60492-8.
Eker B, Ortmann J, Migliori GB, Sotgiu G, Muetterlein R, Centis R et al. Multidrug- and extensively drug-resistant tuberculosis, Germany. Emerg Infect Dis. 2008;14:1700–6. doi: https://doi.org/10.3201/eid1411.080729.
El Sahly H, Teeter L, Pawlak R, Musser J, Graviss E. Drug-resistant tuberculosis: a disease of target populations in Houston, Texas. J Infect. 2006;53:5–11. doi: https://doi.org/10.1016/j.jinf.2005.10.002.
Jamal L, Guibu I, Tancredi M, Ramalho M, Vasconcelos G, Cota I et al. Reliability and usefulness of TB/HIV co-infection data proceeding from developing countries. Bangkok, Thailand: International Conference on AIDS; 2004.
Leimane V, Dravniece G, Riekstina V, Sture I, Kammerer S, Chen MP et al. Treatment outcome of multidrug/extensively drug-resistant tuberculosis in Latvia, 2000-2004. Eur Respir J. 2010;36:584–93. doi: https://doi.org/10.1183/09031936.00003710.
Migliori GB, Besozzi G, Girardi E, Kliiman K, Lange C, Toungoussova OS et al. Clinical and operational value of the extensively drug-resistant tuberculosis definition. Eur Respir J. 2007;30:623–6. doi: https://doi.org/10.1183/09031936.00077307.
Palmero D, Ritacco V, Ambroggi M, Poggi S, Güemes Gurtubay J, Alberti F et al. Multidrug-resistant tuberculosis in AIDS patients at the beginning of the millennium. Medicina. 2006;66:399–404. doi: https://pubmed.ncbi.nlm.nih.gov/17137168/.
Shean KP, Willcox PA, Siwendu SN, Laserson KF, Gross L, Kammerer S et al. Treatment outcome and follow-up of multidrug-resistant tuberculosis patients, West Coast/Winelands, South Africa, 1992–2002. Int J Tuberc Lung Dis. 2008;12:1182–9. doi: https://pubmed.ncbi.nlm.nih.gov/18812049/.
Varma JK, Nateniyom S, Akksilp S, Mankatittham W, Sirinak C, Sattayawuthipong W et al. HIV care and treatment factors associated with improved survival during TB treatment in Thailand: an observational study. BMC Infect Dis. 2009;9. doi: https://doi.org/10.1186/1471-2334-9-42.
Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray A et al. Timing of initiation of antiretroviral drugs during tuberculosis therapy. N Engl J Med. 2010;362:697–706. doi: https://doi.org/10.1056/NEJMoa0905848.
Havlir D, Ive P, Kendall M, Luetkemeyer A, Swindells S, Kumwenda J et al. International randomized trial of Immediate vs. early ART in HIV+ patients treated for TB: ACTG 5221 STRIDE study. Boston, United States of America 8th Conference on Retroviruses and Opportunistic Infections; 2011 (CROI conference abstracts prior to 2014 are no longer available online ).
Blanc F, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E et al. Significant enhancement in survival with early (2 weeks) vs. late (8 weeks) initiation of highly active antiretroviral treatment (HAART) in severely immunosuppressed HIV-infected adults with newly diagnosed tuberculosis: “34% reduction in mortality in early arm”. Vienna, Austria: 18th International AIDS Conference; 2010 (www.natap.org/2010/IAS/IAS_91.htm).
Fox GJ, Mitnick CD, Benedetti A, Chan ED, Becerra M, Chiang C-Y et al. Surgery as an adjunctive treatment for multidrug-resistant tuberculosis: an individual patient data metaanalysis. Clin Infect Dis. 2016;62:887–95. doi: https://doi.org/10.1093/cid/ciw002.
Harris RC, Khan MS, Martin LJ, Allen V, Moore DAJ, Fielding K et al. The effect of surgery on the outcome of treatment for multidrug-resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2016;16. doi: https://doi.org/10.1186/s12879-016-1585-0.
Boston University. Efficacy and safety of levofloxacin for the treatment of MDR-TB (Opti-Q) [website]. Maryland, USA: US National Library of Medicine; 2022 (https://clinicaltrials.gov/show/NCT01918397).