6.References

  1. Global tuberculosis report 2020. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240013131).
  2. Impact of the COVID-19 pandemic on TB detection and mortality in 2020. Geneva: World Health Organization; 2021 (https://www.who.int/publications/m/item/impact-of-the-covid-19-pandemic-on-tb-detection-and-mortality-in-2020).
  3. WHO End TB Strategy: global strategy and targets for tuberculosis prevention, care and control after 2015. Geneva: World Health Organization; 2015 (https://www.who.int/publications/i/item/WHO-HTM-TB-2015.19).
  4. Report of the 16th meeting of the Strategic and Technical Advisory Group for Tuberculosis (WHO/ HTM/TB/2016.10). Geneva: World Health Organization; 2016 (https://www.who.int/tb/advisory_ bodies/stag_tb_report_2016.pdf?ua=1).
  5. WHO consolidated guidelines on tuberculosis Module 3: diagnosis - rapid diagnostics for tuberculosis detection. Geneva: World Health Organization; 2021 update (https://apps.who.int/iris/bitstream/handle/10665/342331/9789240029415-eng.pdf).
  6. Framework of indicators and targets for laboratory strengthening under the End TB Strategy (WHO/ HTM/TB/2016.18). Geneva: World Health Organization; 2016 (https://www.who.int/publications/i/item/9789241511438).
  7. WHO consolidated guidelines on tuberculosis Module 4: treatment - drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240007048).
  8. Public announcement to TB in vitro diagnostics manufacturers. Geneva: World Health Organization; 2021 (https://www.who.int/publications/m/item/public-announcement-to-tb-in-vitro-diagnostics-manufacturers).
  9. Consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240007048).
  10. Definitions and reporting framework for tuberculosis - 2013 revision (updated December 2014) (WHO/HTM/TB/2013.2). Geneva: World Health Organization; 2013 (https://apps.who.int/iris/bitstream/handle/10665/79199/9789241505345_eng.pdf;jsessionid=FD522CF3B90C25716F962 88BFDEA6C75?sequence=1).
  11. Definitions and reporting framework for tuberculosis - 2013 revision (updated December 2014) [WHO/HTM/TB/2013.2]. Geneva, Switzerland: World Health Organization; 2013 (https://apps.who.int/iris/bitstream/handle/10665/79199/9789241505345_eng.pdf?sequence=1).
  12. Planning for country transition to Xpert MTB/RIF Ultra cartridges. Geneva: Global Laboratory Initiative; 2017 (http://stoptb.org/wg/gli/assets/documents/GLI_ultra.pdf).
  13. Practical guide to implementation of Truenat tests for the detection of TB and rifampicin resistance (Version 2). Geneva: Stop TB Partnership, USAID and GLI; 2021 (http://stoptb.org/assets/documents/resources/publications/sd/Truenat_Implementation_Guide.pdf).
  14. FIND cDST WHO supplement. Geneva: World Health Organization; 2019 (https://www.finddx.org/wpcontent/uploads/2019/08/FIND_cDST_WHO_Supplement.xlsx).
  15. Practical implementation of lateral flow urine lipoarabinomannan assay (LF-LAM) for detection of active tuberculosis in people living with HIV. Geneva: Global Laboratory Initiative; 2021 (http://stoptb.org/wg/gli/assets/documents/practical-implementation-lf-lam.pdf).
  16. Sengstake S, Rigouts L. A multicenter evaluation of the Genoscholar PZA-TB II line probe assay to detect pyrazinamide resistance in Mycobacterium tuberculosis isolates: study report. Institute of Tropical Medicine, Antwerp. 2020.
  17. Commercial serodiagnostic tests for diagnosis of tuberculosis: policy statement (WHO/HTM/ TB/2011.5). Geneva: World Health Organization; 2011 (https://www.who.int/publications/i/item/9789241502054).
  18. Meeting report of the WHO expert consultation on the definition of extensively drug-resistant tuberculosis. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/meeting-report-of-the-who-expert-consultation-on-the-definition-of-extensively-drug-resistant-tuberculosis).
  19. Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB. Geneva: World Health Organization; 2018 (https://www.who.int/publications/i/item/WHO_CDS_TB_2018.5).
  20. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis (WHO/CDS/TB/2018.24). Geneva: World Health Organization; 2018 (https://www.who.int/publications/i/item/9789241514842).
  21. HIV Reagent Program [website]. Bethesda, MA: NIH HIV Reagent Program; 2021 (https://www.hivreagentprogram.org/).
  22. Access to pure drug substances for DST: bedaquiline and delamanid StopTB information note. Geneva: Stop TB Partnership; 2021 (http://stoptb.org/assets/documents/resources/publications/sd/BDQ_DEL_access.pdf).
  23. American Type Culture Collection [website]. Manassas, VA: ATCC; 2021 (https://www.atcc.org).
  24. GDF product catalog. Geneva: Stop TB Partnership; 2021 (http://www.stoptb.org/gdf/drugsupply/product_catalog.asp).
  25. Technical report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/item/technical-report-on-critical-concentrations-for-drugsusceptibility-testing-of-isoniazid-and-therifamycins-(rifampicin-rifabutin-and-rifapentine)).
  26. Updated interim critical concentrations for first-line and second-line DST (as of May 2012) Geneva: World Health Organization; 2012 (http://www.stoptb.org/wg/gli/assets/documents/Updated%20 critical%20concentration%20table_1st%20and%202nd%20line%20drugs.pdf).
  27. Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis (WHO/CDS/TB/2018.5). Geneva: World Health Organization; 2018 (http://apps.who.int/iris/bitstream/10665/260470/1/WHO-CDS-TB-2018.5-eng.pdf).
  28. World Health Organization, Foundation for Innovative New Diagnostics. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide (WHO/CDS/TB/2018.19). Geneva: World Health Organization; 2018 (https://apps.who.int/iris/bitstream/handle/10665/274443/WHO-CDS-TB-2018.19-eng.pdf).
  29. Genoscreen. Deeplex Myc-TB - A new Mycobacterium tuberculosis drug resistance prediction assay [website]. (https://www.genoscreen.fr/en/genoscreen-services/products/deeplex).
  30. Tgen. Tgen and ABL pursue global rollout of advanced TB test [website]. (https://www.tgen.org/ news/2019/march/18/tgen-tb-test-to-help-eliminate-disease-worldwide/).
  31. Advanced Biological Laboratories. Deepchek-TB Rpob/Inha genotyping assay [website]. (https://www.ablsa.com/laboratory-applications/deepchek-hbv-rt-genotyping-dr-assay-2-2/).
  32. Oxford Nanopore Technologies. Rapid diagnosis of drug resistant tuberculosis using nanopore sequencing [website]. (https://nanoporetech.com/resource-centre/ rapid-diagnosis-drug-resistant-tuberculosis-using-nanopore-sequencing).
  33. Technical guide on next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex. Geneva: World Health Organization; 2018 (https://www.who.int/publications/i/item/WHO-CDS-TB-2018.19).
  34. Practical considerations for implementation of Truenat. Geneva: Stop TB Partnership and USAID; 2020 (http://stoptb.org/assets/documents/resources/wd/Practical%20Considerations%20for%20 Implementation%20of%20Truenat.pdf).
  35. GLI guide to TB specimen referral systems and integrated networks. Geneva: Global Laboratory Initiative; 2017 (http://www.stoptb.org/wg/gli/gat.asp).
  36. GLI specimen referral toolkit. Geneva: Global Laboratory Initiative; 2017 (http://www.stoptb.org/wg/gli/srt.asp).
  37. Chest radiography in tuberculosis detection: summary of current WHO recommendations and guidance on programmatic approaches. Geneva: World Health Organization; 2016 (https://www.who.int/publications/i/item/9789241511506).
  38. Systematic screening for active tuberculosis: principles and recommendations (WHO/HTM/ TB.2013.04). Geneva: World Health Organization; 2013 (https://www.who.int/publications/i/item/9789241548601).
  39. WHO operational handbook on tuberculosis, Module 2: screening - systematic screening for tuberculosis disease. Geneva: World Health Organization; 2021 (https://www.who.int/publications/i/item/9789240022676).
  40. Tuberculosis laboratory biosafety manual (WHO/HTM/TB/2012.11). Geneva: World Health Organization; 2012 (https://www.who.int/publications/i/item/9789241504638).
  41. GLI practical guide to TB laboratory strengthening. Geneva: Global Laboratory Initiative; 2017 (http://stoptb.org/wg/gli/gat.asp).
  42. ISO 15189: 2012 Medical laboratories - requirements for quality and competence. Geneva: International Organization for Standardization; 2017 (https://www.iso.org/standard/56115.html).
  43. Considerations for adoption and use of multi-disease testing devices in integrated laboratory network (WHO/HTM/TB/2017.05). Geneva: World Health Organization; 2017 (https://www.who.int/publications/i/item/WHO-HTM-TB-2017.06).
  44. GLI quick guide to TB diagnostics connectivity solution. Geneva: Global Laboratory Initiative; 2016 (http://www.stoptb.org/WG/gli/assets/documents/gli_connectivity_guide.pdf).
  45. Van Deun A, Aung KJM, Bola V, Lebeke R, Hossain MA, de Rijk WB et al. Rifampin drug resistance tests for tuberculosis: challenging the gold standard. J Clin Microbiol. 2013;51(8):2633-40 (https://pubmed.ncbi.nlm.nih.gov/23761144).
  46. Berhanu RH, Schnippel K, Kularatne R, Firnhaber C, Jacobson KR, Horsburgh CR et al. Discordant rifampicin susceptibility results are associated with Xpert MTB/RIF probe B and probe binding delay. Int J Tuberc Lung Dis. 2019;23(3):358-62.
  47. Ngabonziza JCS, Decroo T, Migambi P, Habimana YM, Van Deun A, Meehan CJ et al. Prevalence and drivers of false-positive rifampicin-resistant Xpert MTB/RIF results: a prospective observational study in Rwanda. Lancet Microbe. 2020;1(2):e74-e83 (https://doi.org/10.1016/S2666-247(20)30007-0).
  48. Beylis N, Ghebrekristos Y, Nicol M. Management of false-positive rifampicin resistant Xpert MTB/ RIF. Lancet Microbe. 2020;1(6):e238 (https://doi.org/10.1016/S2666-5247(20)30123-3).
  49. Chakravorty S, Simmons AM, Rowneki M, Parmar H, Cao Y, Ryan J et al. The new Xpert MTB/RIF Ultra: improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. mBio. 2017;8(4):e00812-17 (https://pubmed.ncbi.nlm.nih.gov/28851844).
  50. Dorman SE, Schumacher SG, Alland D, Nabeta P, Armstrong DT, King B et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis. 2018;18(1):76-84 (https://doi.org/10.1016/S1473-3099(17)30691-6).
  51. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Geneva: World Health Organization; 2020 (https://apps.who.int/iris/bitstream/handle/10665/330395/9789240000339-eng.pdf).
  52. Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N. Xpert MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014;2014(1):CD009593 (https://pubmed.ncbi.nlm.nih.gov/24448973).
  53. Cao Y, Parmar H, Gaur RL, Lieu D, Raghunath S, Via N et al. Xpert MTB/XDR: a 10-color reflex assay suitable for point-of-care settings to detect isoniazid, fluoroquinolone, and second-line-injectable-drug resistance directly from Mycobacterium tuberculosis-positive sputum. Journal of clinical microbiology. 2021;59(3):e02314-20.
  54. Sanchez-Padilla E, Merker M, Beckert P, Jochims F, Dlamini T, Kahn P et al. Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl J Med. 2015;372(12):1181-2.
  55. Ismail NA, McCarthy K, Conradie F, Stevens W, Ndjeka N. Multidrug-resistant tuberculosis outbreak in South Africa. Lancet Infect Dis. 2019;19(2):134-5 (https://doi.org/10.1016/S1473-3099(18)30715-1).
  56. Lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis of active tuberculosis in people living with HIV. Policy update. Geneva: World Health Organization; 2019 (https://www.who.int/publications/i/item/9789241550604).
  57. Rapid communication: key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB) (WHO/CDS/TB/2019.26). Geneva: World Health Organization; 2018 (https://www.who.int/tb/publications/2019/WHO_RapidCommunicationMDRTB2019.pdf?ua=1).
  58. WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment. Geneva: World Health Organization; 2020 (https://www.who.int/publications/i/item/9789240007048).
  59. GLI model diagnostic algorithms. Geneva: Global Laboratory Initiative; 2017 (http://www.stoptb.org/wg/gli/assets/documents/GLI_algorithms.pdf).
  60. Implementing tuberculosis diagnostics: a policy framework (WHO/HTM/TB/2015.11). Geneva, World Health Organization. 2015 (https://www.who.int/publications/i/item/9789241508612).
  61. Ismail NA, Aono A, Borroni E, Cirillo DM, Desmaretz C, Hasan R et al. A multimethod, multicountry evaluation of breakpoints for bedaquiline resistance determination. Antimicrob Agents Chemother. 2020;64(9):e00479-20 (http://aac.asm.org/content/64/9/e00479-20.abstract).
  62. Dean AS, Zignol M, Cabibbe AM, Falzon D, Glaziou P, Cirillo DM et al. Prevalence and genetic profiles of isoniazid resistance in tuberculosis patients: A multicountry analysis of cross-sectional data. PLoS Med. 2020;17(1):e1003008 (https://doi.org/10.1371/journal.pmed.1003008).
  63. WHO treatment guidelines for isoniazid-resistant tuberculosis. Supplement to the WHO treatment guidelines for drug-resistant tuberculosis (WHO/CDS/TB/2018.7). Geneva: World Health Organization; 2018 (https://apps.who.int/iris/bitstream/handle/10665/260494/9789241550079-eng.pdf).
  64. Cao Y, Parmar H, Gaur RL, Lieu D, Raghunath S, Via N et al. Xpert MTB/XDR: A 10-color reflex assay suitable for point of care settings to detect isoniazid-, fluoroquinolone-, and second-line-injectable-drug resistance directly from Mycobacterium tuberculosis-positive sputum. bioRxiv.2020:2020.09.08.288787 (http://biorxiv.org/content/early/2020/09/09/2020.09.08.288787.abstract).

Book navigation